Table S1. Bacterial strains, plasmids and primers used in this study. Potential indicator strains are listed in Table S2.

Strain, plasmid or primer	Origin or relevant characteristic	Source or reference	
Bacteria			
Pseudomonas sp. LMG 2338	WLIP producer and white line indicator	BCCM ^a	
P. putida			
RW10S2 CPMG2130, CPMG2131, CPMG2132, CPMG2133, CPMG2134, CPMG2135, CPMG2136	Rice rhizosphere isolate, Sri Lanka RW10S2 mutant, <i>gacS</i> ::Tn <i>Mod</i> , Km ^R	20 This study	
CMPG2173 CMPG2170, CMPG2171, CMPG2172	RW10S2 mutant, <i>wlpR</i> ::Tn <i>Mod</i> , Km ^R RW10S2 mutant, <i>wlpA</i> ::Tn <i>Mod</i> , Km ^R	This study This study	
CMPG2165, CMPG2166, CMPG2167, CMPG2168, CMPG2169	RW10S2 mutant, wlpB::TnMod, Km ^R	This study	
CMPG2120, CMPG2121, CMPG2122, CMPG2123, CMPG2124, CMPG2125, CMPG2126, CMPG2127	RW10S2 mutant, wlpC::TnMod, Km ^R	This study	
CMPG2173 (pCMPG6125)	CMPG2173 complemented strain, containing pCMPG6125, Km ^R , Tet ^R	This study	
CMPG2173 (pCMPG6116)	CMPG2173 complemented strain, containing pCMPG6116, Km ^R , Tet ^R	This study	
CMPG2134 (pCMPG6113)	CMPG2134 complemented strain, containing pCMPG6113, Km ^R , Tet ^R	This study	
CMPG2134 (pCMPG6203)	CMPG2134 complemented strain, containing pCMPG6203, Km ^R , Tet ^R	This study	
RW10S2PMRI RW10S2PMRR	RW10S2 mutant, <i>pmrI</i> ::Km, Km ^R RW10S2 mutant, <i>pmrR</i> ::Km, Km ^R	17 17	
P. tolaasii CH36	Agaricus bisporus isolate, Belgium	4	
Plasmids			
pHERD26T	<i>Pseudomonas</i> expression vector ($P_{BAD} araC$), Tet ^R	14	
pJB3Tc20	Broad-host-range cloning vectore, Ap ^R , Tet ^R	2	
pCMPG6113	pJB3Tc20 with gacS from P. putida RW10S1	10	
pCMPG6116	pHERD26T with <i>xtlR</i> from <i>P. putida</i> BW11M1 cloned in <i>XbaI/Eco</i> RI sites	9	
pCMPG6125	pJB3Tc20 with <i>wlpR</i> from <i>P. putida</i> RW10S2 cloned	This study	

	in XbaI/EcoRI sites	
pCMPG6203	pJB3Tc20 with <i>gacS</i> from <i>P. putida</i> RW10S2 cloned in <i>Hin</i> dIII/ <i>Xba</i> I sites	This study
Primers		
PGPRB-6231	5'-CCACGGCATTGATTCAGGCGCA-3'	This study
PGPRB-6232	5'-AGGGCGTGGATTCGTGGCTGTT-3'	This study
PGPRB-6233	5'-CGGCGCAACTGCCGGAATTCAT-3'	This study
PGPRB-6234	5'-GGCTGGCAAAGGCGAATTGCGA-3'	This study
PGPRB-6353	5'-TGTGCCAGCAGCCGCGGTAATA-3'	This study
PGPRB-6354	5'-TGACGACAGCCATGCAGCACCT-3'	This study
PGPRB-6551	5'-TTGCTCTAGATCAGGCACCGGCCATCCATC-3'	This study
PGPRB-6552	5'-CTCGGAATTCGACTCAAGGATGAACAGGAC-3'	This study
PGPRB-7317	5'-TTGCAAGCTTTCAGGCACTCAGGTGCGCCT-3'	This study
PGPRB-7318	5'-CTCGTCTAGACCACTCGCGACGGCCCGCAC-3'	This study
PGPRB-7319	5'-GGACACCTTGGGCAGCAACTCC-3'	This study
PGPRB-7320	5'-CAGACAGCCTTTTCCCTCGGCG-3'	This study
PGPRB-7321	5'-CCTGGCACAGGCCGATTACAGC-3'	This study
PGPRB-7322	5'-TGACCTTCAGCGAGCGCAACTG-3'	This study
PGPRB-7323	5'-TCGAAGTGCCCAACCCTGACCA-3'	This study
PGPRB-7324	5'-GTCCATGTCGCGGGTTTCCTGG-3'	This study
PGPRB-7325	5'-ATGAAGGAGAAAACTCACCGAGGC-3'	This study
PGPRB-7326	5'-GGCAATCAGGTGCGACAATCTATC-3'	This study

^a BCCM/LMG: Belgian Co-ordinated Collection of Micro-organisms (<u>http://bccm.belspo.be/index.php</u>) / Laboratory of Microbiology Ghent University

Strain	Origin or relevant characteristic	Source or reference	
α-Proteobacteria			
Azospirillum brasilense Sp245	Wheat rhizosphere isolate	5	
Sphingomonas wittichii RW1	River isolate	11	
β-Proteobacteria			
Bordetella avium 197N	Domesticated turkey isolate	15	
Burkholderia vietnamensis LMG 10927	Rice rhizosphere isolate	BCCM ^a	
Variovorax paradoxus LMG 1797	Type strain	BCCM	
γ-Proteobacteria			
Aeromonas hydrophilia ATCC7966	Milk tin isolate	ATCC ^b	
Citrobacter freundii ATCC8090	Type strain	ATCC	
Enterobacter aerogenes ATCC13048	Type strain	ATCC	
Klebsiella pneumoniae ATCC13883	Neotype strain human serotype 3	ATCC	
Proteus vulgaris LMM2011			
Pseudomonas aeruginosa PA14	Clinical isolate	8	
PAO1	Clinical isolate	18	
P. fluorescens LMG 1794	Type strain	BCCM	
P. putida KT2440	Restriction-deficient isolate of <i>P</i> . <i>putida</i> mt-2	13	
P. savastanoi pv. savastanoi LMG 5484	Olea europaea isolate, France	BCCM	
P. stutzeri LMG 2333	Type strain, spinal fluid isolate	BCCM	
P. syringae pv. tomato DC3000	Rifampicin-resistant derivative of strain DC52	3	
P. tolaasii CH36	Agaricus bisporus isolate, Belgium	4	
P. viridiflava LMG 2352	Type strain	BCCM	
Salmonella enteritidis ATCC13076		ATCC	
Serratia entomophila DSM12358		DSMZ ^c	
Shigella flexneri LMG 10472	Serotype 2b	BCCM	
Xanthomonas sp. pv. zinnia LMG 8692	Zinnia elegans isolate, Australia	BCCM	
X. albilineans LMG 494	Saccharum officinarum isolate, Fiji	BCCM	
X. alfalfae pv. alfalfa LMG 497	Medicago sativa isolate, Sudan	BCCM	
X. axonopodis pv. manihotis LMG 784	Manihot esculenta isolate, Brazil	BCCM	

 Table S2. Strains used in analysis of antagonistic activity spectrum of P. putida RW10S2

X. campestris pv. campestris LMG 582	Brassica sp. isolate, Belgium	BCCM
X. campestris pv. pelargonii 10342	Pelargonium zonale isolate, France	1
X. citri pv. malvacearum LMG 761	Gossypium sp. isolate, Sudan	BCCM
X. hortorum pv. hederae LMG 7411	Hedera helix isolate, USA	BCCM
X. oryzae pv. oryzae PXO99	Oryzae sativa isolates, Philippines	19
PXO112		
PXO340		
X. sacchari LMG 471	Saccharum officinarum isolate, Guadeloupe	BCCM
X. translucens LMG 12921	Anthurium andreanum isolate, USA	BCCM
X. translucens pv. cerealis LMG 679	Bromus inermis isolate, USA	BCCM
X. translucens pv. graminis LMG 726	<i>Dactylis glomerata</i> isolate, Switzerland	BCCM
X. translucens pv. hordei LMG 737	Hordeum vulgare isolate, India	BCCM
X. vasicola pv. holcicola LMG 736	Sorghum bicolor isolate, New Zealand	BCCM
Yersinia enterocolitica LMG 7899	Glanders-like infection isolate, France	BCCM
Actinobacteria		
Mycobacterium smegmatis DSM43756		DSMZ
Rhodococcus erythropolis N11	Soil isolate	12
Firmicutes		
Bacillus megaterium ATCC13632		ATCC
Bacillus subtilis LMG 7135	Type strain	BCCM
Lactobacillus rhamnosus LMG 6400	Type strain	BCCM
Staphylococcus aureus ATCC6358		ATCC
Fungi, Ascomycetes		
Candida albicans CAI4		7
Saccharomyces cerevisiae W303-1A		6

^a BCCM/LMG: Belgian Co-ordinated Collection of Micro-organisms / Laboratory of Microbiology Ghent University
 ^b ATCC, American Type Culture Collection
 ^c DSMZ: Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures

Assays	WT	wlpA	wlpB	wlpC	wlpR	wlpR ⁺	wlpR [*]	gacS	gacS ⁺	gacS*
Antagonism ^a	8.3 ± 0.6	ND	ND	ND	ND	8.6 ± 0.3	7.6 ± 0.3	ND	7.3 ± 0.6	3.6 ± 0.8^d
Hemolysis ^b	8.8 ± 0.8	ND	ND	ND	ND	8.3 ± 0.6	6.6 ± 0.3	ND	7.6 ± 0.6	7.3 ± 0.6
Swarming ^c	13.0 ± 1.0	ND	ND	ND	ND	12.0 ± 1.0^{e}	12.0 ± 1.0	ND	12.0 ± 1.0	12.0 ± 1.0^{e}

Table S3. Phenotypic characterization of *P. putida* RW10S2 and representative mutants affected in WLIP production.

^a Antagonism against X. citri pv. malvacearum LMG 761

^b Hemolysis on horse blood TSA agar plate

^c Swarming on 0.8% TSA agar

^d Turbid halo

^e Pattern different from wild type

WT: RW10S2 wild type; *wlpA* through *wlpR*: mutants CMPG2170, CMPG2169, CMPG2120, CMPG2173, respectively; *wlpR*⁺: mutant CMPG2173 with pCMPG6125 containing *wlpR* from *P. putida* RW10S2; *wlpR*^{*}: mutant CMPG2173 with pCMPG6116 containing *xtlR* from *P. putida* BW11M1; *gacS*: mutant CPMG2134; *gacS*⁺: mutant CMPG2134 with pCMPG6203 containing *gacS* from *P. putida* RW10S2; *gacS*^{*}: mutant CMPG2134 with pCMPG6113 containing *gacS* from *P. putida* RW10S1. ND: not detected. Each value (radius in mm) is the mean \pm SD of three repeats.

Fig. S1. Southern blot analysis of *Eco*RI-digested genomic DNA from RW10S2 wild type (2), *wlpA* (3, CMPG2170), *wlpB* (4, CMPG2169) and *wlpC* (5, CMPG2120) mutants using a probe targeting the Tn*Mod*-OKm' plasposon. DIG-labeled DNA marker III (0.1, 0.5, 0.8, 0.9, 1.3, 1.5, 1.9, 2.0, 3.5, 4.2, 4.9, 5.1, 21.2 kb) was used in lane 1.

Fig. S2. Cladogram of Neighbor-Joining tree inferred from amino acid alignment of adenylation (A) domains extracted from functionally characterized *Pseudomonas* NRPSs. Lipopeptide-specific codes used for NRPS enzymes: Arf (arthrofactin, *Pseudomonas* sp. MIS38); Etl (entolysin, *P. entomophila* L48); Mass (massetolide, *P. fluorescens* SS101); Ofa (orfamide, *P. fluorescens* Pf-5); Pso (putisolvin, *P. putida* PCL1445); Syf (syringafactin, *P. syringae* DC3000); Syp (syringopeptin, *P. syringae* pv. syringae B301D); Syr (syringomycin, *P. syringae* pv. syringae strain B301D); Visc (viscosin, *P. fluorescens* SBW25); Wlp (WLIP, *P. putida* RW10S2; in bold). For each domain the amino acid substrate specificity is indicated in parentheses using the standard three-letter code. Non-protein amino acids are annotated as follows: *allo*-threonine (aTHR); 2,3-dehydro-2-aminobutyric acid (DHB); 2,4-diaminobutyric acid (DAB); 3-hydroxyaspartate (OH-ASP). Some residues that have not yet been unequivocally identified in entolysin and putisolvin II are indicated with XLE (LEU or ILE). Clusters with WLIP domains are highlighted in different colors. The tree was rooted with the divergent SyrB1 domain.

Fig. S3. Cladogram of Neighbor-Joining tree inferred from amino acid alignment of condensation (C) domains extracted from functionally characterized *Pseudomonas* NRPSs. Lipopeptide-specific codes as in supplementary figure 2. Clusters with predicted conventional domains (green), dual epimerization/condensation domains (red), and N-acylation domains (blue) are shown in different colors. The tree was rooted with the divergent C1 domain of SyrE (in black).

Fig. S4. HPLC chromatograms of the lipopeptide extracts from *P. putida* RW10S2 wild type (A), *gacS* mutant CMPG2134 (B), and *wlpC* mutant CMPG2120 (C). The major peak in wild-type extract, absent in the mutants, showed anti-*Xanthomonas* and hemolytic activities.

Fig. S5. MS fragmentation fingerprints of WLIP from reference WLIP producer *Pseudomonas* sp. LMG 2338 (A) and the *P. putida* RW10S2 LP (B). The ion peaks at m/z 1126.7 correspond to the protonated ion of WLIP. The other protonated ions obtained from fragmentation are indicated on the WLIP structure.

10

Fig. S6. 700 MHz 1D ¹H spectrum of WLIP in dimethylformamide (DMF-d7) solution at 25°C.

Fig. S7a. Overlay of the 700 MHz 2D ¹H-¹³C HSQC spectrum of the LP of *P. putida* RW10S2 (blue) with that of pseudodesmin A (red), both measured in dimethylformamide (DMF) solution at 25°C. Only the CH^{α} region is shown here. Pseudodesmin A is a member of the viscosin group that differs from WLIP only by a D-glutamine instead of a D-glutamate as the second amino acid (16). All cross-peaks are labeled according to one-letter amino acid codes. No significant differences are visible in the chemical shifts between the two compounds, indicating a similar conformation and thus stereochemistry. The main difference is at the level of the Glu2 \rightarrow Gln2 substitution between both compounds.

Fig. S7b. Overlay of the 700 MHz 2D 1 H- 13 C HSQC spectrum of the LP of *P. putida* RW10S2 (blue) with that of pseudodesmin A (red), both measured in dimethylformamide (DMF) solution at 25°C. Only the aliphatic region is shown here. Pseudodesmin A is a member of the viscosin group that differs from WLIP only by a D-glutamine instead of a D-glutamate as the second amino acid (16). Only the cross-peaks originating from these residues are labeled on the spectrum. Other than these Glx residues, no significant differences are visible in the chemical shifts between the two compounds.

Fig. S8. Antagonistic activity of *P. putida* RW10S2 and of purified WLIP (serially diluted samples applied on plate) against (A) *X. axonopodis* pv. *manihotis* LMG 784 and (B) *B. megaterium* ATCC13632. WT: *P. putida* RW10S2 wild type; *wlpC* insertion mutant CMPG2120.

Interestingly, the WLIP-deficient *wlpA* mutant CMPG2170 produced a residual halo in a *B*. *megaterium* cell lawn, suggesting that some additional inhibitory substance is produced by *P*. *putida* RW10S2.

SUPPLEMENTARY REFERENCES

- Berthier, Y., V. Verdier, J. L. Guesdon, D. Chevrier, J. B. Denis, G. Decoux, and M. Lemattre. 1993. Characterization of *Xanthomonas campestris* pathovars by rRNA gene restriction patterns. Appl. Environ. Microbiol. 59:851-859.
- Blatny, J. M., T. Brautaset, H. C. Winther-Larsen, K. Haugan, and S. Valla. 1997. Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl. Environ. Microbiol. 63:370-379.
- Buell, C. R., V. Joardar, M. Lindeberg, J. Selengut, I. T. Paulsen, M. L. Gwinn, R. J. Dodson, R. T. Deboy, A. S. Durkin, J. F. Kolonay, R. Madupu, S. Daugherty, L. Brinkac, M. J. Beanan, D. H. Haft, W. C. Nelson, T. Davidsen, N. Zafar, L. Zhou, J. Liu, Q. Yuan, H. Khouri, N. Fedorova, B. Tran, D. Russell, K. Berry, T. Utterback, S. E. Van Aken, T. V. Feldblyum, M. D'Ascenzo, W. L. Deng, A. R. Ramos, J. R. Alfano, S. Cartinhour, A. K. Chatterjee, T. P. Delaney, S. G. Lazarowitz, G. B. Martin, D. J. Schneider, X. Tang, C. L. Bender, O. White, C. M. Fraser, and A. Collmer. 2003. The complete genome sequence of the *Arabidopsis* and tomato pathogen *Pseudomonas syringae* pv. *tomato* DC3000. Proc. Natl. Acad. Sci. USA 100:10181-10186.
- De Mot, R., G. Schoofs, A. Roelandt, P. Declerck, P. Proost, J. Van Damme, and J. Vanderleyden. 1994. Molecular characterization of the major outer-membrane protein OprF from plant root-colonizing *Pseudomonas fluorescens*. Microbiology 140:1377-1387.
- De Mot, R., and J. Vanderleyden. 1989. Application of two dimensional protein analysis for strain fingerprinting and mutant analysis of *Azospirillum* species. Can. J. Microbiol. 35:960-967.
- 6. Feldmann, H., and E. L. Winnacker. 1993. A putative homologue of the human autoantigen Ku from *Saccharomyces cerevisiae*. J. Biol. Chem. **268**:12895-12900.
- 7. Fonzi, W. A., and M. Y. Irwin. 1993. Isogenic strain construction and gene mapping in *Candida albicans*. Genetics **134**:717-728.
- 8. Lee, D. G., J. M. Urbach, G. Wu, N. T. Liberati, R. L. Feinbaum, S. Miyata, L. T. Diggins, J. He, M. Saucier, E. Deziel, L. Friedman, L. Li, G. Grills, K. Montgomery,

R. Kucherlapati, L. G. Rahme, and F. M. Ausubel. 2006. Genomic analysis reveals that *Pseudomonas aeruginosa* virulence is combinatorial. Genome Biol. **7:**R90.

- 9. Li, W. 2012. Molecular study of *Pseudomonas putida* antagonism against pathogenic *Pseudomonas* and *Xanthomonas*. Ph.D. thesis. KU Leuven, Leuven, Belgium.
- Li, W., P. Estrada-de los Santos, S. Matthijs, G. L. Xie, R. Busson, P. Cornelis, J. Rozenski, and R. De Mot. 2011. Promysalin, a salicylate-containing *Pseudomonas putida* antibiotic, promotes surface colonization and selectively targets other *Pseudomonas*. Chem. Biol. 18:1320-1330.
- Miller, T. R., A. L. Delcher, S. L. Salzberg, E. Saunders, J. C. Detter, and R. U. Halden. 2010. Genome sequence of the dioxin-mineralizing bacterium *Sphingomonas wittichii* RW1. J. Bacteriol. 192:6101-6102.
- Nagy, I., F. Compernolle, K. Ghys, J. Vanderleyden, and R. De Mot. 1995. A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by *Rhodococcus* sp. strain NI86/21. Appl. Environ. Microbiol. 61:2056-2060.
- Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. Martins dos Santos, D. E. Fouts, S. R. Gill, M. Pop, M. Holmes, L. Brinkac, M. Beanan, R. T. DeBoy, S. Daugherty, J. Kolonay, R. Madupu, W. Nelson, O. White, J. Peterson, H. Khouri, I. Hance, P. Chris Lee, E. Holtzapple, D. Scanlan, K. Tran, A. Moazzez, T. Utterback, M. Rizzo, K. Lee, D. Kosack, D. Moestl, H. Wedler, J. Lauber, D. Stjepandic, J. Hoheisel, M. Straetz, S. Heim, C. Kiewitz, J. A. Eisen, K. N. Timmis, A. Dusterhoft, B. Tummler, and C. M. Fraser. 2002. Complete genome sequence and comparative analysis of the metabolically versatile *Pseudomonas putida* KT2440. Environ. Microbiol. 4:799-808.
- Qiu, D., F. H. Damron, T. Mima, H. P. Schweizer, and H. D. Yu. 2008. P_{BAD}-based shuttle vectors for functional analysis of toxic and highly regulated genes in *Pseudomonas* and *Burkholderia* spp. and other bacteria. Appl. Environ. Microbiol. 74:7422-7426.
- Sebaihia, M., A. Preston, D. J. Maskell, H. Kuzmiak, T. D. Connell, N. D. King, P.
 E. Orndorff, D. M. Miyamoto, N. R. Thomson, D. Harris, A. Goble, A. Lord, L.

Murphy, M. A. Quail, S. Rutter, R. Squares, S. Squares, J. Woodward, J. Parkhill, and L. M. Temple. 2006. Comparison of the genome sequence of the poultry pathogen *Bordetella avium* with those of *B. bronchiseptica*, *B. pertussis*, and *B. parapertussis* reveals extensive diversity in surface structures associated with host interaction. J. Bacteriol. **188**:6002-6015.

- Sinnaeve, D., C. Michaux, J. Van Hemel, J. Vandenkerckhov, E. Peys, F. A. M. Borremans, B. Sas, J. Wouters, and J. C. Martins. 2009. Structure and X-ray conformation of pseudodesmins A and B, two new cyclic lipodepsipeptides from *Pseudomonas* bacteria. Tetrahedron 65:4173-4181.
- Steindler, L., I. Bertani, L. De Sordi, J. Bigirimana, and V. Venturi. 2008. The presence, type and role of *N*-acyl homoserine lactone quorum sensing in fluorescent *Pseudomonas* originally isolated from rice rhizospheres are unpredictable. FEMS Microbiol. Lett. 288:102-111.
- Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. Nature 406:959-964.
- Vera Cruz, C. M., L. Halda-Alija, F. J. Louws, D. Z. Skinner, M. L. George, R. J. Nelson, F. J. DeBruijn, C. W. Rice, and J. E. Leach. 1995. Repetitive sequence-based polymerase chain reaction of *Xanthomonas oryzae* pv. *oryzae* and *Pseudomonas* species. Int. Rice Res. Notes 20:23-24.
- Vlassak, K., L. Van Holm, L. Duchateau, J. Vanderleyden, and R. De Mot. 1992. Isolation and characterization of fluorescent *Pseudomonas* associated with the roots of rice and banana grown in Sri Lanka. Plant Soil 145:51-63.