Supplemental Material for Gaidenko et al.

Supplemental Tables S1, S2; Supplemental Figures S1, S2; Supplemental figure legends S1, S2.

Strain	Genotype	Construction ¹
PB2	trpC2	168 Marburg strain
PB198	amyE::ctc-lacZ trpC2	(1)
PB1078	rsbRB∆2 rsbRC∆1::ery rsbRD∆2 amyE::ctc-lacZ trpC2	(3)
PB1105	rsbRA K143E rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG5973 → PB1078 ²
PB1107	rsbRA Q142A rsbRB Δ 2 rsbRD Δ 2 rsbRC Δ 1::ery amyE::ctc-lacZ trpC2	pTG5951 → PB1078 ²
PB1108	rsbRA E148K rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG5974 → PB1078 ²
PB1110	rsbRA L149R rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG5978 → PB1078 ²
PB1138	rsbRA L146R rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG5976 → PB1078 ²
PB1140	rsbRA V139R rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG5977 → PB1078 ²
PB1141	rsbRA E136K rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	(3)
PB1147	rsbRA K143A rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG6004 → PB1078 ²
PB1148	rsbRA E148A rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG6005 → PB1078 ²
PB1149	rsbRA L149A rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG6006 → PB1078 ²
PB1151	rsbRA Q142A rsbS S59A rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc- lacZ trpC2	pTG6009 → PB1107 ²
PB1152	rsbRA E148K rsbS S59A rsbRBA2 rsbRDA2 rsbRCA1::ery amyE::ctc- lacZ trpC2	pTG6009 → PB1108 ²
PB1153	rsbRA L146A rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG6017 → PB1078 ²
PB1154	rsbRA V139A rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG6016 → PB1078 ²
PB1161	rsbS S59A rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	(3)
PB1166	rsbRA L149D rsbRB $\Delta 2$ rsbRD $\Delta 2$ rsbRC $\Delta 1$::ery amyE::ctc-lacZ trpC2	pTG6020 → PB1078 ²
PB1179	rsbRA K137A rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG6021 → PB1078 ²
PB1180	rsbRA T138A rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG6022 → PB1078 ²
PB1182	rsbRA Q142A amyE::ctc-lacZ trpC2	pTG5951 → PB198 ²
PB1183	rsbRA E148K amyE::ctc-lacZ trpC2	pTG5974 → PB198 ²
PB1188	$rsbRA S140A rsbRB\Delta2 rsbRD\Delta2 rsbRC\Delta1::ery amyE::ctc-lacZ trpC2$	pTG6023 → PB1078 ²
PB1189	rsbRA L141A rsbRB∆2 rsbRD∆2 rsbRC∆1::ery amyE::ctc-lacZ trpC2	pTG6024 → PB1078 ²
PB1192	$rsbRA$ I144A $rsbRB\Delta 2$ $rsbRD\Delta 2$ $rsbRC\Delta 1$::ery $amyE$::ctc-lacZ trpC2	pTG6025 → PB1078 ²
PB1193	$rsbRA Q147A rsbRB\Delta2 rsbRD\Delta2 rsbRC\Delta1::ery amyE::ctc-lacZ trpC2$	pTG6026 → PB1078 ²

Table S1. Bacillus subtilis strains

¹Arrow indicates transformation from donor to recipient

²Two-step allele replacement

Plasmid	Alteration or relevant feature	Reference
pSS4332	Expresses I-Scel for two-step allele replacement	(2)
pTG5916	pUS19-based integrative plasmid. Ndel site converted to I-Scel	(3)
pTG5923	rsbRA in pTG5916	(3)
pTG5951	<i>rsbRA</i> Q142A in pTG5916 (CAA → GCA)	This study
pTG5973	<i>rsbRA</i> K143E in pTG5916 (AAA → GAA)	This study
pTG5974	<i>rsbRA</i> E148K in pTG5916 (GAG → AAG)	This study
pTG5976	rsbRA L146R in pTG5916 (CTG → CGA)	This study
pTG5977	<i>rsbRA</i> V139R in pTG5916 (GTA → CGA)	This study
pTG5978	rsbRA L149R in pTG5916 (CTG → CGA)	This study
pTG6004	<i>rsbRA</i> K143A in pTG5916 (AAA → GCA)	This study
pTG6005	<i>rsbRA</i> E148A in pTG5916 (GAG → GCG)	This study
pTG6006	rsbRA L149A in pTG5916 (CTG → GCG)	This study
pTG6009	<i>rsbS</i> S59A in pTG5916 (TCA → GCA)	(3)
pTG6016	<i>rsbRA</i> V139A in pTG5916 (GTA → GCA)	This study
pTG6017	<i>rsbRA</i> L146A in pTG5916 (CTG→ GCG)	This study
pTG6020	rsbRA L149D in pTG5916 (CTG → GAC)	This study
pTG6021	<i>rsbRA</i> K137A in pTG5916 (AAA → GCA)	This study
pTG6022	<i>rsbRA</i> T138A in pTG5916 (ACA → GCA)	This study
pTG6023	rsbRA S140A in pTG5916 (TCC \rightarrow GCC)	This study
pTG6024	<i>rsbRA</i> L141A in pTG5916 (CTG → GCG)	This study
pTG6025	rsbRA I144A in pTG5916 (ATC → GCC)	This study
pTG6026	rsbRA Q147A in pTG5916 (CAA → GCA)	This study

Table S2. Plasmids used for strain construction

Fig. S1. Clustal W alignment of 29 linker regions from RST modules encoded by diverse microbial genomes. Sequence of each RsbRA homologue is labeled by genus_species and UniProt identifier; these represent one archaeal and seven bacterial phyla. According to the Conserved Domain Database (4), all listed homologues have N-terminal non-heme globin domains except the four protobacterial examples marked by the asterisk following their UniProt indentifier; these four possess heme-binding globin domains. Labels above the alignment indicate five residues from the N-terminal globin domain, the 13-residue linker, and five residues from the C-terminal STAS (sulfate transporter and anti-sigma factor antagonist) domain; filled inverted triangles show five highly conserved linker positions. Numbers beneath the alignment designate residue number within *B. subtilis* RsbRA, whose sequence is marked by the open triangle on the left. Color scheme is standard Clustal W: blue for WLVIMFAC; green for TSNQ; magenta for DE; red for KR, orange for G; and yellow for P.

Fig. S2. Presence of all four RsbR co-antogonist paralogs masks the enhancing phenotype caused by linker substitutions in RsbRA. White bars show relative basal level in strains encoding only RsbRA, with data taken from Figure 3; black bars show relative basal activity in strains encoding a full co-antagonist complement: RsbRA, RB, RC and RD. Parent indicates wild type RsbRA, whereas Q142A and E148K indicate RsbRA substitution.

References

- 1. **Boylan, S. A., A. Rutherford, S. M. Thomas, and C. W. Price.** 1992. Activation of *Bacillus subtilis* transcription factor σ^{B} by a regulatory pathway responsive to stationary-phase signals. J Bacteriol **174:**3695-706.
- Cybulski, R. J., Jr., P. Sanz, F. Alem, S. Stibitz, R. L. Bull, and A. D. O'Brien. 2009. Four superoxide dismutases contribute to *Bacillus anthracis* virulence and provide spores with redundant protection from oxidative stress. Infect Immun 77:274-85.
- Gaidenko, T. A., X. Bie, E. P. Baldwin, and C. W. Price. 2011. Substitutions in the presumed sensing domain of the *Bacillus subtilis* stressosome affect its basal output but not response to environmental signals. J Bacteriol 193:3588-97.
- Marchler-Bauer, A., et al. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205-10.