1 **Title:**

- 2 The TetR-type transcriptional repressor RolR from Corynebacterium glutamicum
- 3 regulates resorcinol catabolism by binding to a unique operator *rolO*

4 **Running title:**

5 RolR binds to *rolO* and regulates resorcinol catabolism

6 Authors' affiliations:

- 7 Tang Li^{1,2}, Kexin Zhao^{1†}, Yan Huang¹[‡], Defeng Li³, Cheng-Ying Jiang^{1,2}, Nan Zhou^{1,2},
- 8 Zheng Fan⁴, Shuang-Jiang Liu^{1,2*}

¹State Key Laboratory of Microbial Resources and ²Environmental Microbiology
 Research Center at Institute of Microbiology, Beijing, 100101, P. R. China; ³National
 Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of
 Sciences, Beijing 100101, China; ⁴Core Facility at Institute of Microbiology, Beijing,

- 13 100101, P. R. China
- ¹⁴ [†]Present address: Suite 2200, Cardiovascular Research Center, 290, Munro St,
 ¹⁵ Thunder Bay, Ontario, Canada.

¹⁶ [‡]Present address: State Key Laboratory of Chemo/biosensing and chemometrics,
¹⁷ Hunan University, Changsha, China.

- 18 **Corresponding author*:**
- 19 Shuang-Jiang Liu
- 20 Institute of Microbiology, Chinese Academy of Sciences
- 21 Beichen Xilu 1, Chaoyang District
- 22 Beijing 100101, P. R. China
- 23 Tel: +86-10-64807423; Fax: +86-10-64807421
- 24 Email: <u>liusj@im.ac.cn</u>

26 Appendixes:

- 27 **Table A1.** Primers and dsDNA used in this study. Restriction enzyme cutting sites
- are underlined. Ribosome binding site is given in boldface.

Primers (5'-3')		
Q11F	GCACCCGATACTGGTTCTA	For real-time qRT-PCR analysis of <i>rolH</i>
Q11R	AGTGACAATGCCGTGAATG	
Q12F	TATGGCTGCTGAGGGAATT	For real-time qRT-PCR analysis of <i>rolM</i>
Q12R	CAGGTAGGCACCGTAGAGC	
Q13F	AAAACCCTCGCCTCAAACT	For real-time qRT-PCR analysis of <i>rolD</i>
Q13R	GTCGGTGATATGCCCAACC	
QrpoBF	CGTACTGCTGAAGGCTCTT	For real-time qRT-PCR analysis of <i>rpoB</i> as an internal control
QrpoBR	TTTGCTACACCATCGGACT	
11a	GAAGCAGGGCATAGTGGA	To amplify <i>rolHM</i> transcript with 12b
12b	CTAATTTCAGCGGCGAGA	
12c	CAGCGACTATCCGATTACG	To amplify <i>rolMD</i> transcript with 13d
13d	TCTTTGACCGTTCCCTCC	
1110F	ACA <u>CATATG</u> CCCACGCCTTCG (<i>Nde</i> I)	To generate pET28a-rolR
1110R	CTT <u>GAGCTC</u> CCTGAGTCTGGTGCTT (<i>Sac</i> I)	
PE10	TGAAGCGTCCTTGTGCTG	For primer extension of <i>rolR</i>
PE11	ACCTCCACCGACGATGCAG	For primer extension of <i>rolHMD</i>
FP11F	CGAAGGCGTGGGCATAGGG	For DNase I footprinting of the <i>rolHMD</i> sense strand
FP11R	TTCGTAGAATGTTGGCCAC	
P10F	<u>GGCGCC</u> CAGACATCGGTATCGAAG (<i>Nar</i> I)	To generate pXMJ19-P _{rolR} -lacZ
P10R	<u>CTGCAG</u> CATAGGGAAAACCTTAGC (<i>Pst</i> I)	
TRC10F	TAA <u>GAATTC</u> AAAGGAGGAATGCCCAC GCCTTCGCAGC (<i>EcoR</i> I)	To generate pTRCmob- <i>rolR</i>
TRC10R	GGCGGATCCCTACTGCGGTTTGACTGG	
-	(BamHI)	
For EMSA		
EMSAF1	TAGCTGATCTGCGGTG	To generate the M/F1 fragment

		with EMSAR1
EMSAR1	CGAAGTTATTGGGTGA	
EMSAF2	TGTAAAATCTGAACCCTTGTTCAT	To generate the F2 fragment
		with EMSAR2
EMSAR2	CTGAACAACATTATCTAGATCACA	
EMSAF3	ATTTATGAATCATGATTCAGAATG	To generate the F3 fragment
		with EMSAR2
EMSAR3	CATTCTGAATCATGATTCATAAAT	To generate the F4 fragment
		with EMSAF1
EMSAF4	AATGGGGGTATTGTAAA	To generate the F5 fragment
		with EMSAR3
EMSAK4	IGAIICAIAAAIGAACA	with EMSAE4
FMSAF5	A ATGGGGGTATTGTA A A ATCTGA ACCC	To generate the F7 fragment
LIVISI II S	TTGTTCATTTATG	with EMSAR5
EMSAR5	CATAAATGAACAAGGGTTCAGATTTTA	
	CAATACCCCCATT	
EMSAF6	ACCCTTGTTCATTTATGAA	To generate the F8 fragment
		with EMSAR6
EMSAR6	TTCATAAATGAACAAGGGT	
EMSAFU	AGGTTCCCGTTCCGATGTTT	To generate the U fragment with
		EMSARU
EMSARU	CTAAGGTTTTCCCTATGCCC	
EMSAFD	GATCCCATGTCACCCAATA	To generate the D fragment with
		EMSARD
EMSARD	CCAATCGACTTCCAAAAGC	
dsDNA in SPR		
DED1	TGAACCCTTGTTCA	The 1 st inverted repeat
KLI I	ACTTGGGAACAAGT	The T inverted repeat
REP2	TTCATTTATGAA	The 2 nd inverted repeat
	AAGTAAATACTT	The 2 inverted repeat
REP3	TGAATCATGATTCA	The 3 rd inverted repeat
	ACTTAGTACTAAGT	
rolO	AAAATCTGAACCCTTGTTCATTTATGAAT	The operator <i>rolO</i>
	TTTTAGACTTGGGAACAAGTAAATACTTA	operator rovo

29

30 Figure A1. RT-PCR analysis of the co-transcription of genes *rolH*, *rolM*, and *rolD*.

31 RTase+ indicates addition of reverse transcriptase and RTase- indicates no addition

32 of reverse transcriptase. The primers inside the coding region of genes were used to

33 amplify the fragments spanning the intergenic regions of *rolH* and *rolM* (lane,

34 *rolHM*), *rolM* and *rolD* (lane, *rolMD*).

Figure A2. Purification of His₆-RolR and determination of its native molecular mass. 36 Ni²⁺-NTA 37 A: Coomassie-stained SDS-PAGE of His₆-RolR purified by chromatography and FPLC. B: Determination of the native molecular mass by gel 38 filtration. For calibration, a premixed protein molecular mass marker containing the 39 following proteins was used: Aprotinin (6,500 Da), Ribonuclease A (13,700 Da), 40 Carbonic anhydrase (29,000 Da), Conalbumin (75,000 Da). V_o was determined with 41 blue dextran (2,000 kDa). 42

44 Figure A3. Surface Plasmon Resonance assay of RolR binding to different dsDNA

45 fragments. His₆-RolR was immobilized on a CM5 sensor chip and the individual

46 dsDNA fragment (50 μ M, 20 μ l) was injected at a flow rate of 20 μ l/min.

43

47

Figure A4. Genome data-mining of *rolR*-like genes and *rolO*-like motifs (red tangles) from species of *Corynebacterium*, *Burkholderia*, *Mycobacterium*, *Rhodococcus*, and *Streptomyces*. The lengths and distances of gene coding regions are drawn to scale based on genome annotation.