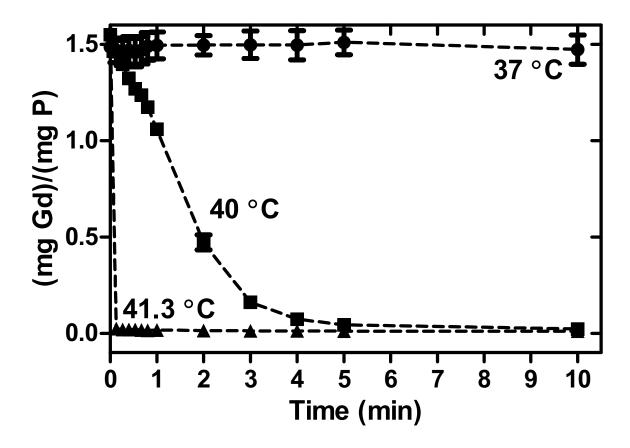


Supplemental Figure 1. Calibration of R₁ vs. concentration of Gd-HP-DO3A at 0.5T. Triton X-100 was added to lyse iLTSL, releasing Gd-HP-DO3A and the drug. The resulting relaxivity (slope) values for lysed and intact iLTSL were 4.994 ± 0.010 and 3.70 ± 0.02 mM⁻¹s⁻¹, respectively, and were significantly different (p<0.0001, F test). Relaxivity of Gd-HP-DO3A (4.96 ± 0.02 mM⁻¹s⁻¹) was not significantly different from that of lysed iLTSL (p=0.19, F test). R²>0.9999 for all fitted data.



Supplemental Figure 2. Percent release of Gd-HP-DO3A at 37, 40 and 41.3 °C. a) Release over 10 minutes. b) Release over first minute of heating. The methods used to approximate % Gd-HP-DO3A release were T_1 measurements before (method 1, \Box) and after (method 2, \triangle) passing aliquots through two size exclusion chromatography columns, as well as concentration measurements with ICP-AES (method 3, •). Symbol size indicates temperature: 37 °C is smallest and 41.3 °C is largest. Maximum mean difference from ICP-AES measurements is 7±2% for \Box and 9±4% for \triangle . Percent release magnitudes were not statistically different between ICP-AES and the other two methods of measurements (p>0.05, Dunn's multiple comparison). Each point represents the mean of 3 experiments ± SEM.

Supplemental Figure 3. Temperature during release assay at 37, 40 and 41.3 °C in which both doxorubicin and Gd-HP-DO3A release were quantified (corresponding to Figure 2). The initial decrease in temperature is due to the addition of concentrated liposomal solution to the pre-heated HEPES buffer. The temperature of each release assay (shown on the right) was the target minimum temperature reached.

Supplemental Figure 4. Gd/P weight ratio as a function of time, as determined by ICP-AES at three temperatures, after released Gd-HP-DOA3 was removed with size exclusion chromatography (n=3).