Structure-based Design of Potent Bcl-2/Bcl-xL Inhibitors with Strong *in vivo* Antitumor Activity

Haibin Zhou⁺, Angelo Aguilar⁺, Jianfang Chen⁺, Longchuan Bai⁺, Jennifer

L. Meagher[#], Liu Liu⁺, Chao-Yie Yang⁺, Donna McEachern⁺, Xin Cong⁺, Jeanne A. Stuckey^{#€}, Shaomeng Wang^{+*}

⁺Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, and [#]Life Sciences Institute, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0934, USA

Table of Contents:

- I. Figure S1 (S2)
- II. Table S1 (S3)
- III. Table S2 (S4)
- IV. Figures S2-10 (S5-S13)
- V. References (S14)

Figure S1. Animal weight change for each group as compared to the animal weights before the start of the treatment.

Data Collection	Bcl-xL-12
Space Group	P2 ₁ 2 ₁ 2 ₁
Unit Cell a, b, c (Å)	41.627, 54.891, 79.569
Wavelength (Å)	0.97857
Resolution $(Å)^1$	1.4 (1.42 – 1.4)
Rsym $(\%)^2$	5.3 (45.8)
$\langle I/sI \rangle^3$	20 (5)
Completeness (%) ⁴	94.5 (91.2)
Redundancy	7.0 (7.0)
Refinement	
Resolution (Å)	1.4
R-Factor $(\%)^5$	0.1641
Rfree $(\%)^6$	0.1847
Protein atoms	1271
Water Molecules	175
Unique Reflections	34821
R.m.s.d. ⁷	
Bonds	0.01
Angles	0.97
MolProbity Score ⁸	4.97
Clash Score ⁸	1.4
RSR of compound ⁹	0.061
RSCC of compound ⁹	0.972
PDB ID	3SP7

Table S1: Data Collection and Refinement Statistics

¹Statistics for highest resolution bin of reflections in parentheses.

 ${}^{2}R_{sym} = \Sigma_{h}\Sigma_{j} I I_{hj} - \langle I_{h} \rangle 1 / \Sigma_{h}\Sigma_{j}I_{hj}$, where I_{hj} is the intensity of observation j of reflection h and $\langle I_{h} \rangle$ is the mean intensity for multiple recorded reflections.

³Intensity signal-to-noise ratio.

⁴Completeness of the unique diffraction data.

 5 R-factor = Σ_{h} I IF_oI – IF_cI I / Σ_{h} IF_oI, where F_o and F_c are the observed and calculated structure factor amplitudes for reflection h.

 ${}^{6}R_{free}$ is calculated against a 10% random sampling of the reflections that were removed before structure refinement.

⁷Root mean square deviation of bond lengths and bond angles.

⁸Molprobity Server.¹

⁹Predeposition Electron Density Server.²

Compound	Retention time, t _R (min)	% purity
8	3.64	> 99
9	4.40	97
10	4.18	98.5
11	5.05	97.7
12	5.05	> 99
13	6.01	> 99
14	5.26	> 99
15	5.41	> 99
16	5.32	> 99

Table S2: Purity data of all the biologically evaluated compounds.

The purity of the biologically evaluated compounds was determined by Waters ACQUITY UPLC. The conditions of the UPLC were as follow:

Eluents: solvent A (0.1% of TFA in water) and solvent B (0.1% of TFA in CH₃CN).

Column: ACQUTIY UPLC BEH C18 column (2.1X50 mm, 1.7 µm).

Method: 10% B to 100% B in 10 min.

Flow rate: 0.61 mL/min.

Detector: UV 254 nm

Run time: 10 min

Figure S2. UPLC analysis of compound 8.

Auto-Scaled Chromatogram

Figure S3. UPLC analysis of compound 9.

Figure S4. UPLC analysis of compound 10.

4

4.296

21716

0.64

Figure S5. UPLC analysis of compound 11.

Figure S6. UPLC analysis of compound 12.

Figure S7. UPLC analysis of compound 13.

Auto-Scaled Chromatogram

Figure S8. UPLC analysis of compound 14.

Figure S9. UPLC analysis of compound 15.

References:

1. Davis, I. W.; Leaver-Fay, A.; Chen, V. B.; Block, J. N.; Kapral, G. J.; Wang, X.; Murray, L. W.; Arendall, W. B., 3rd; Snoeyink, J.; Richardson, J. S.; Richardson, D. C. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. *Nucleic Acids Res* **2007**, 35, W375-83.

2. Kleywegt, G. J.; Harris, M. R.; Zou, J. Y.; Taylor, T. C.; Wahlby, A.; Jones, T. A. The Uppsala Electron-Density Server. *Acta Crystallogr D Biol Crystallogr* **2004**, 60, 2240-9.