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Divalent Interactions 

 For a dimeric protein binding to ligand [1], the concentrations of species in solution are 

governed by mass conservation relationships (Eqns. S1 and S2). 

   

   

Each binding step can be described by a site dissociation constant that describes the affinity of 

ligand for a particular protomer.  If the sites are identical, as in a homodimer, the site constants 

for either protomer at a given step (ki) will be equivalent.  In the case of a heterodimer, each 

protomer has a different affinity for the ligand, and for the first binding step this difference is 

accounted for by the coefficient c0 multiplied by k1; for the second step, the difference in the 

second dissociation constant k2 is given by c1.  The site (ki) and aggregate (Ki) dissociation 

constants (Figure 1, main text) are related by statistical factors that take these coefficients into 

account, either for homomeric proteins with identical subunits (cj = 1) (cf. Eqn. 9, Theory) or  

non-identical (cj ≠ 1) (Eqns. S3 and S4). 
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By substituting expressions of the dissociation constants (Eqns. 6, 7 and 8, Theory and Eqns. S3 

and S4) into the mass conservation equations (S1 and S2), we obtain a cubic polynomial in L 

(Eqn. S5). 

   

where 
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The general solution to this cubic is described below in Trimeric Interactions. 

The value of L is then used to solve for the equilibrium concentrations of all other species (Eqns. 

S6-S8). 

   

   

   

 

Trivalent Interactions 

 Fourth-degree polynomials are of the highest order that can be solved analytically [2].  

Many methods have been put forth to solve the quartic [3].  Descartes’ 1637 method, which 

factors the quartic into two quadratics is used here [4-6]. 
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The quartic is first reduced through the substitution L = y – a/4 to remove the cubic term (Eqn. 

S9).   
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The reduced quartic is then factored into two quadratics (Eqn. S10) 

   

by making the substitutions given by Eqns. S11-S13. 

   

   

   

To obtain h, Eqns. 19-21 are rearranged to obtain a cubic polynomial in h2 (Eqn. S14). 
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Eqn. S14 has a general form whose solution is known (Eqn. S15) [7]. 
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By making the substitution y = z – p/3, the squared term is removed (Eqn. S16). 
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Only one of the three roots of Eqn. S16 corresponds to the physically relevant quantity, L.  Due 

to the constraint that ET, LT, k1, k2 and k3 must be positive, the unique root can be selected from 

among the possible solutions by examining the sign of the discriminant (Δ) (Eqn. S17), allowing 

automation of the solution in a fitting algorithm (see Supplementary Excel worksheet).   

   

When Δ > 0, there is one real solution (Eqn. S18) [1]. 
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When Δ < 0, there are three real solutions (Eqns. S19-S21) [8]. 

   

   

   

where 

   

The physically relevant root corresponds to z1 [8].   

 

When Δ = 0, two of the roots are identical, and either of the above equations yields the correct 

root.  When one of the roots is zero, t = 0 and Eqn. S16 can be reduced in degree; the identical 

(positive) roots are given by z1 = z2 = √ݏ.  This is the relevant root, with the exception of the 

trivial case L = 0 when LT = 0. 

 

 Once z has been determined using one of the methods above, h2 is obtained using the 

substitution:  

   

To simplify the arithmetic going forward, any positive, real root h2 is chosen for calculations in 

Excel; taking the square root, h is obtained, and j is calculated from e, f and h (Eqn. S13). 
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At this point, the two quadratics in y (Eqn. S10) can be written in L, a, g, h and j (using the 

substitution L = y – a/4) (Eqns. S23-S24) and solved for roots L1 thru L4 (Eqns. S25-S28). 

   

   

   

   

   

   

Only one of the four roots corresponds to the equilibrium concentration, L.  To determine which 

root is relevant, it is necessary to inspect the discriminant for both of the quadratic equations, 

given by Δ1 for roots L1 and L2 and Δ2 for roots L3 and L4 (Eqns. S29-S30).  
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When both Δ1 and Δ2 are positive, there are four real roots, and L3 is the relevant root.  When 

either Δ1 or Δ2 is positive, there are two real roots of opposite sign and the positive root is the 

relevant root. 
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