Model Selection

Screening of the SNPs

Two methods were used to screen the single nucleotide polymorphisms (SNP). The first method used was the stepwise backward selection based on Akaike Information Criterion (AIC) and the second method was the Least Angle Regression (LASSO). To use AIC variable selection, we first fitted a preliminary model with only main effects, including blood sample type (whole blood, WB, versus plasma-deplete cells, PDC) used for folate analysis, age, gender, BMI, and 64 SNP, with no interaction terms. Group, gender, and 14 SNPs were selected by AIC stepwise selection and formed the preliminary model 1 (**Supplemental Table S1**). The *P* values were based on two-sided *t*-tests and we also computed *P* values adjusted by the false discovery rate (1, 2).

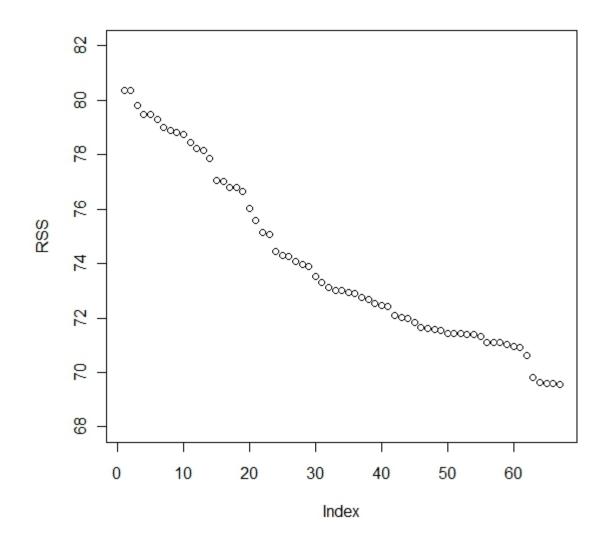
Supplemental Table 1: Results from the first screening of predictors for main effects using the AIC criterion

Predictor	SNP	Estimate	Standard Error	t value	P value	Adjusted <i>P</i> value ¹
Intercept	-	-5.298	0.136	-38.906	0.000	0.000
SPTLC1	rs11790991	-0.066	0.037	-1.764	0.079	0.115
BCMO1	rs12934922	-0.051	0.032	-1.607	0.109	0.115
CD36	rs1358337	0.051	0.032	1.616	0.107	0.115
MTHFR	rs1801131	0.052	0.034	1.514	0.131	0.131
CRBP2	rs2118981	-0.104	0.032	-3.236	0.001	0.006
ABCA1	rs2230806	0.070	0.034	2.075	0.039	0.087
APOA1	rs2727784	-0.052	0.032	-1.661	0.098	0.115
BCMO2	rs35361223	0.150	0.075	1.994	0.047	0.094
BHMT	rs3733890	0.077	0.035	2.171	0.031	0.079
a-TTP	rs4501570	0.683	0.299	2.288	0.023	0.068
a-TTP	rs4587328	-0.689	0.299	-2.307	0.022	0.068
CETP	rs5882	0.060	0.033	1.793	0.074	0.115
FOLH1	rs61886492	-0.167	0.086	-1.939	0.053	0.096
SCARB1	rs838892	0.054	0.032	1.691	0.092	0.115

¹*P*-values are adjusted by the false discovery rate (1, 2).

For the LASSO variable selection, we only included 64 SNPs as predictors. We used the *Lars* program in R to implement the variable selection (3, 4). The response is log(nHcy), the predictors are 64 SNP, which need to be normalized to mean zero and variance 1. A tuning parameter lambda controls the fraction of non-zero coefficients (number of SNP in the model). The solution path is shown in **Supplemental Table 2**, which indicates the order in which the SNP entered the model when decreasing the tuning parameter lambda. The SNP that enter the model in earlier steps tend to be more important and significant.

Step	Action	Predictor	SNP	lambda
1	+	CRBP2	rs3772875	0.928
2	+	SPTLC1	rs11790991	0.919
3	+	CETP	rs5882	0.761
4	+	FOLH1	rs61886492	0.688
5	+	BHMT	rs3733890	0.684
6	+	BCMO1	rs12934922	0.662
7	+	RBP2	rs2118981	0.624
8	+	CD36	rs3211931	0.613
9	+	SCARB1	rs838892	0.602
10	+	SLC46A1	rs17719944	0.595
11	+	CYP4F2	rs2108622	0.571
12	+	MTHFR	rs1801131	0.552
13	+	ABCA1	rs2230806	0.547
14	+	APOA1	rs2727784	0.524
15	+	BCMO1	rs7501331	0.468
16	+	SLC46A1	rs11080058	0.463
17	+	SCARB1	rs7306660	0.450
18	+	a-TTP	rs4606052	0.450
19	+	SCARB1	rs10773105	0.439
20	+	BMCO2	rs35361223	0.399
21	+	MTR	rs1805087	0.368
22	+	SCARB1	rs7967521	0.340
23	+	MTTP	rs3828542	0.334
24	+	CETP	rs7205804	0.291
25	+	TCII	rs1801198	0.279
26	+	RBP2	rs35674260	0.277


Supplemental Table 2: The LASSO path.

Online Supporting Material

07			047400	0.000
27	+	NPC1L1	rs217420	0.262
28	+	CETP	rs5880	0.252
29	+	MTRR	rs1801394	0.247
30	+	SLC19A1	Rs111702537	0.219
31	+	MTHFR	rs1801133	0.200
32	+	BCMO2	rs2250417	0.187
33	+	CYP4F2	rs3093194	0.177
34	+	ABCA1	rs4149327	0.176
35	+	SLC46A1	rs1128162	0.171
36	+	APOA5	rs12272004	0.167
37	+	SPTLC1	rs7858659	0.156
38	+	SLC46A1	rs739439	0.151
39	+	NPC1L1	rs217430	0.140
40	+	SLC19A1	rs13050920	0.136
41	+	BCMO1	rs6564851	0.133
42	+	NPC1L1	rs217432	0.108
43	+	ABCA1	rs2230808	0.103
44	+	CETP	rs7499892	0.102
45	+	CD36	rs3211956	0.092
46	+	SCARB1	rs12582221	0.077
47	+	MTTP	rs1057613	0.074
48	+	α-TTP	rs4501570	0.070
49	+	BCMO2	rs11214139	0.068
50	+	CYP4F2	rs3093168	0.061
51	+	CBS	rs5742905	0.061
52	+	NPC1L1	rs11763759	0.061
53	+	SLC19A1	rs3788199	0.058
54	+	ABCA1	rs4149267	0.058
55	+	CD36	rs3211834	0.056
56	-	CYP4F2	rs3093194	0.045
57	+	APOA5	rs3135506	0.045
58	+	SLC46A1	rs35714695	0.045
59	+	SLC19A1	rs3788205	0.043
60	+	CD36	rs1358337	0.041
61	+	a-TTP	rs4587328	0.040
62	+	SPTLC1	rs2297568	0.036
63	+	APOA5	rs662799	0.030
64	+	MTTP	rs10516445	0.009
65	+	CYP4F2	rs3093194	0.009
66		MTTP	rs881890	0.008
00	+	MITP	1200,1990	0.006

Online Supporting Material

The sum of residual squares plot for the LASSO method (**Supplemental Figure 1**) indicates that there is a drop in the sum of residual squares at step 15. Therefore, we decided to include the first 15 SNP with corresponding lambda of 0.468 (**Supplemental Table 2**).

Supplemental Figure 1: The sum of residual squares plot for the LASSO method

Adding interactions and fitting the final model

To check for interactions between gender and SNP, we first started with the preliminary model 1 (**Supplemental Table 1**) that was obtained by AIC variable selection. All fourteen predictors in the preliminary model and all interaction terms between gender and fourteen SNP were included before using AIC stepwise selection again. The summary of the results are in **Supplemental Table 3**.

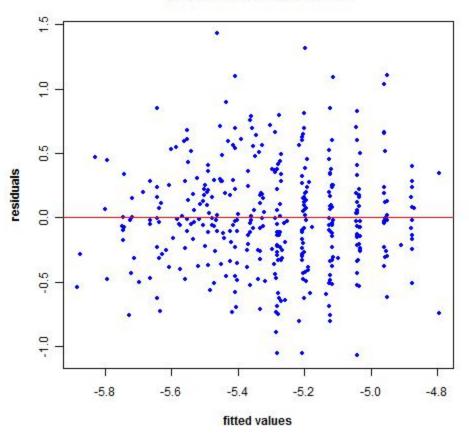
Supplemental Table 3: The summary of the model obtained by adding interactions between gender and 14 SNP to the model screened by AIC.

Predictor	SNP	Estimate	Standard Error	t value	<i>P</i> value	Adjusted <i>P</i> value ¹
Intercept	-	-4.986	0.092	-54.144	0.000	0.000
Blood groups, WB vs. PDC	-	-0.270	0.054	-5.015	0.000	0.000
SPTLC1	rs11790991	-0.075	0.036	-2.090	0.037	0.069
BCMO1	rs12934922	-0.051	0.031	-1.619	0.106	0.123
MTHFR	rs1801131	-0.033	0.044	-0.759	0.448	0.469
CRBP2	rs2118981	-0.181	0.043	-4.247	0.000	0.000
ABCA1	rs2230806	0.065	0.033	1.973	0.049	0.083
APOA1	rs2727784	-0.099	0.042	-2.342	0.020	0.043
BCMO2	rs35361223	0.119	0.073	1.623	0.106	0.123
BHMT	rs3733890	0.083	0.035	2.386	0.018	0.043
α-TTP	rs4501570	0.602	0.289	2.086	0.038	0.069
α-TTP	rs4587328	-0.543	0.289	-1.881	0.061	0.085
CETP	rs5882	0.111	0.043	2.575	0.010	0.038
FOLH1	rs61886492	-0.145	0.084	-1.733	0.084	0.109
SCARB1	rs838892	0.000	0.044	0.003	0.998	0.998
Gender	-	-0.542	0.122	-4.453	0.000	0.000
Gender × <i>MTHFR</i>	rs1801131	0.162	0.068	2.387	0.018	0.043
Gender × <i>CRBP2</i>	rs2118981	0.164	0.061	2.669	0.008	0.035
Gender × APOA1	rs2727784	0.116	0.062	1.874	0.062	0.085
Gender × α-TTP	rs4501570	-0.122	0.063	-1.934	0.054	0.085
Gender × CETP	rs5882	-0.094	0.064	-1.459	0.146	0.160

Gender × SCARB1	rs838892	0.154	0.063	2.431	0.016	0.043	
${}^{1}\mathcal{D}$ values are adjusted by the folio discovery rate (1, 2)							

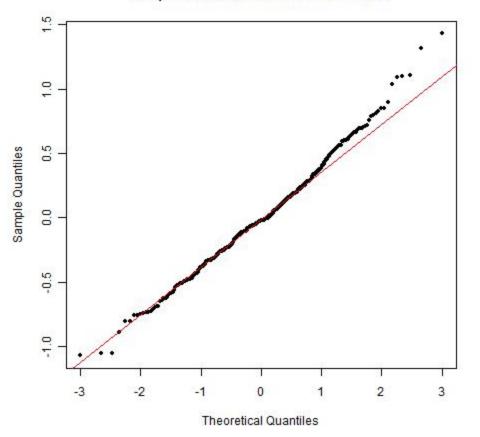
¹*P*-values are adjusted by the false discovery rate (1, 2).

The F test for the interaction terms with df = 6 and 350 gave a value of P < 0.0001, which indicates that the interaction effects are highly significant. We performed backward selection based on P values to obtain the final model. The results of the final model are included in **Table 2** of the manuscript.


We also used the preliminary model (screened by the LASSO method, which includes the first 15 SNP (labeled 1 - 15, **Supplemental Table 2**) as well as gender, blood group (WB versus PDC), and any interaction terms between gender and the 15 SNP. We then used AIC stepwise selection again. The summary of the resulting model is in **Supplemental Table 4**. We further performed backward selection based on *P* values, which led to the same final model as the model obtained when using the preliminary model by AIC selection (**Supplemental Table 1**).

For this final model (**Table 2**, manuscript), the residuals versus fitted values were plotted (**Supplemental Figure 2**) and we also obtained the Q-Q plot of residuals from the final model (**Supplemental Figure 3**). The model assumptions of normality, independence, and homoscedasticity were found not to be seriously violated as indicated by **Supplemental Figure 2** and **Supplemental Figure 3**.

Supplemental Table 4: Summary of the model obtained by adding interactions between gender and 15 SNPs to the model screened by LASSO.


Predictor	SNP	Estimate	Standard Error	t value	<i>P</i> value	Adjusted <i>P</i> value ¹
Intercept	-	-4.929	0.083	-59.615	0.000	0.000
SPTLC1	rs11790991	-0.081	0.036	-2.226	0.027	0.044
BCMO1	rs12934922	-0.045	0.032	-1.430	0.154	0.173
MTHFR	rs1801131	-0.039	0.044	-0.888	0.375	0.397
CRBP2	rs2118981	-0.173	0.043	-4.026	0.000	0.000
ABCA1	rs2230806	0.069	0.033	2.078	0.038	0.058
APOA1	rs2727784	-0.100	0.043	-2.347	0.019	0.039
BHMT	rs3733890	0.080	0.035	2.289	0.023	0.041
CETP	rs5882	0.113	0.043	2.614	0.009	0.024
FOLH1	rs61886492	-0.149	0.084	-1.761	0.079	0.109
SCARB1	rs838892	-0.008	0.044	-0.183	0.855	0.855
Blood groups, WB vs. PDC	-	-0.254	0.054	-4.720	0.000	0.000
Gender	-	-0.652	0.106	-6.135	0.000	0.000
Gender × <i>MTHFR</i>	rs1801131	0.186	0.068	2.748	0.006	0.023
Gender × <i>CRBP2</i>	rs2118981	0.161	0.062	2.599	0.010	0.024
Gender × APOA1	rs2727784	0.104	0.062	1.693	0.091	0.117
Gender × <i>CETP</i>	rs5882	-0.100	0.064	-1.547	0.123	0.147
Gender × SCARB1	rs838892	0.163	0.064	2.564	0.011	0.024

¹*P*-values are adjusted by the false discovery rate (1, 2).

Residuals Vs Fitted Values

Supplemental Figure 2: The residual plot for the final model

QQ plot of residuals from final model

Supplemental Figure 3: The Q-Q plot of the residuals for the final model

Supplemental Literature Cited

- 1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J Royal Stat Soc Series B*. 1995;57:239-300.
- 2. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. *Annals of Statistics*. 2001;29:1165-88.
- Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Annals of Statistics.
 2004;32:407-99.

Online Supporting Material

4. Hastie T, Tibshirani R, Friedman J. Elements of Statistical Learning. New York, NY: Springer; 2002.