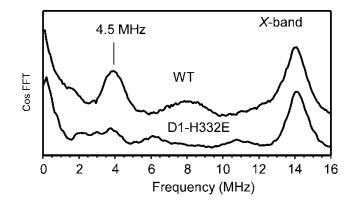
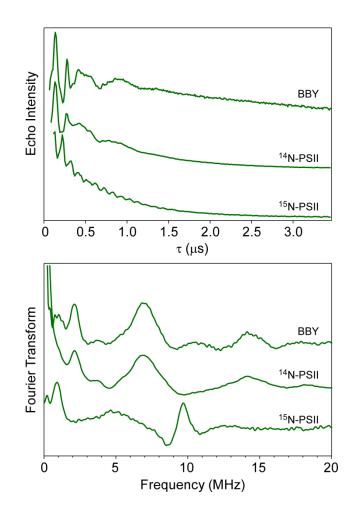
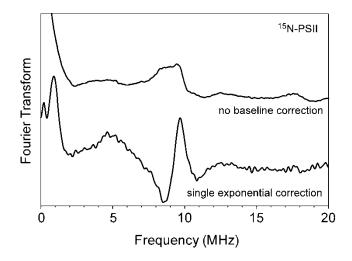
Supporting Information for

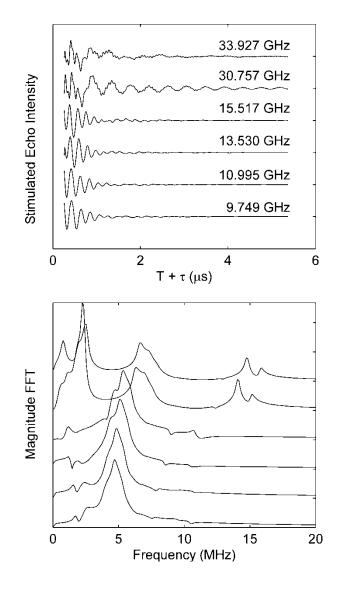

Ligation of D1-His332 and D1-Asp170 to the Manganese Cluster of Photosystem II from Synechocystis Assessed by Multifrequency Pulse EPR Spectroscopy

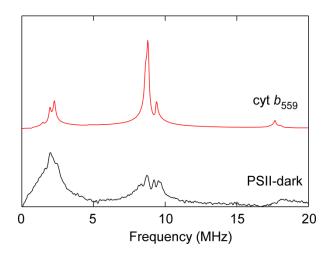
Troy A. Stich¹, Gregory J. Yeagle¹, Rachel J. Service², Richard J. Debus², R. David Britt¹

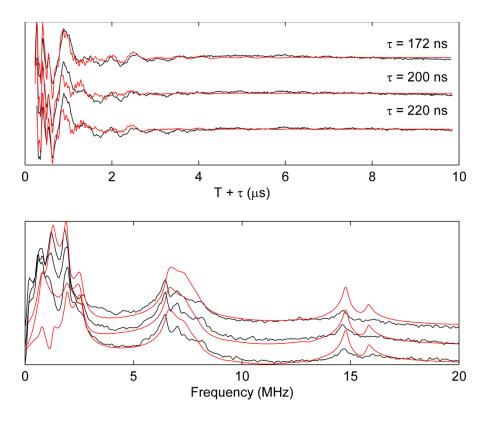

- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616
- 2. Department of Biochemistry, University of California, Riverside, CA 92521

Contents


- Figure S1. X-band two-pulse ESEEM of wild-type* and D1-H332E PSII
- **Figure S2**. *K*_a-band two-pulse ESEEM of BBY, ¹⁴N-PSII, and ¹⁵N-PSII
- Figure S3. Effect of baseline correction on two-pulse ESEEM
- Figure S4. Simulations of ¹⁴N ESEEM at multiple excitation frequencies
- Figure S5. Contribution to ESEEM spectrum from cyt b559
- Figure S6-S7. τ -dependent three-pulse ESEEM spectra and simulations
- Figure S8. Light and Dark spectra for D1-H332E


Figure S1. Comparison of cosine-backfilled Fourier transformed two-pulse ESEEM spectra for WT* and D1-H332E mutant of PSII from *Synechocystis* sp. PCC 6803 obtained at 0.3420 mT with microwave frequency 9.235 GHz. Adapted from Figure 5 in Debus *et al.* 2001 *Biochemistry.*


Figure S2. Time-domain (top) and corresponding cosine-backfilled Fourier transformed (bottom) K_a -band two-pulse ESEEM spectra of BBY, and ¹⁴N-PSII and ¹⁵N-PSII from *Synechocystis* obtained at g = 1.98. Instrument settings: $v_{MW} = 30.757$ GHz, $B_0 = 1.1079$ T, $\pi/2 = 10$ ns, $\Delta \tau = 15$ ns, repetition time = 5 ms, T = 4.5 K.


Figure S3. Effect of exponential baseline subtraction on Fourier transformed K_a -band two-pulse ESEEM of ¹⁵N-PSII. Spectrometer settings same as those listed in caption of Figure S2.

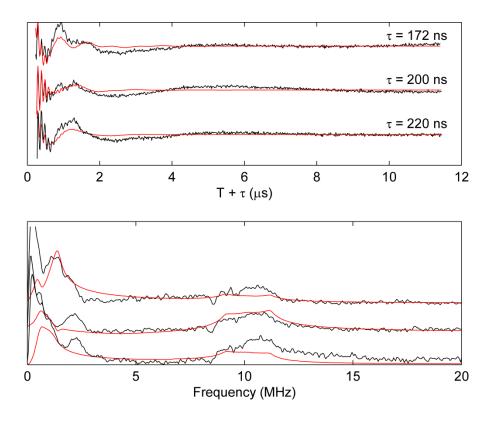

Figure S4. Multifrequency (B_0 corresponds to g = 1.98) three-pulse ESEEM spectra simulated using ¹⁴N magnetic parameters given in Table 1.

Figure S5. Comparison of *Q*-band three-pulse ESEEM spectrum of dark-adapted ¹⁵N-PSII and a simulation of the ¹⁵N-labeled cyt b_{559} . Spectrometer settings are same as those given in the caption of Figure 3.

Figure S6. τ -dependence of *Q*-band three-pulse ESEEM spectra of light-*minus*-dark ¹⁴N-PSII with corresponding simulations obtained using parameters given in Table 1. Spectrometer settings are same as those given in caption of Figure 3.

Figure S7. τ -dependence of *Q*-band three-pulse ESEEM spectra of light-*minus*-dark ¹⁵N-PSII with corresponding simulations obtained using parameters given in Table 1. Spectrometer settings are same as those given in caption of Figure 3.

Figure S8. Light, dark, and difference ESE-EPR spectra (top) for D1-H332E acquired at K_{a} -($v_{MW} = 30.562$ GHz, left) and *Q*-band ($v_{MW} = 33.859$ GHz, right) and corresponding three-pulse ESEEM spectra (bottom). Additional instrument settings for K_{a} -band ESE-EPR: $\pi/2 = 30$ ns, $\tau = 220$ ns, $\Delta B_{0} = 1$ mT, repetition time = 5 ms, T = 5.0 K; K_{a} -band three-pulse ESEEM: $B_{0} = 1.1063$ T, $\pi/2 = 10$ ns, $\tau = 210$ ns, $\Delta T = 15$ ns, repetition time = 5 ms; *Q*-band ESE-EPR: $\pi/2 = 32$ ns, $\tau = 200$ ns, $\Delta B_{0} = 1$ mT, repetition time = 5 ms, T = 4.5 K; *Q*-band three-pulse ESEEM: $B_{0} = 1.2190$ T, $\pi/2 = 16$ ns, $\tau = 128$ ns, $\Delta T = 16$ ns.