SUPPLEMENATL FIGURE LEGENDS

Fig. S1. *A* (inset box), The Complex I isolated from bovine heart contains up to 45 different subunits as analyzed by SDS-PAGE using 4-12% Bis-tris gel (MWM denotes molecular weight marker). *B*, Out of these 45 subunits, there are 14 highly conserved core subunits in the complex I from different species. There are 7 core subunits in the hydrophobic subcomplex. Based on the known protein crystal structures of the core subunits from *T*. thermophilus (hydrophilic domain, PDB ID: 3I9V) and *E*. coli (hydrophobic subcomplex, PDB ID: 3RKO), we have produced a model scheme showing the locations of 51 kDa and 75 kDa subunits in the core functional Complex I. 51 kDa subunit (in light cyan color) and 75 kDa subunit (in light green color) reside at the top of the core hydrophilic domain, which contains FMN cofactor (magentas sticks model) and iron-sulfur clusters (orange-yellow spheres model), and hosts the initial step of respiratory electron transfer activities.

Fig. S2. Amino acid sequence of the precursor of the complex I-75 kDa subunit. The regions labeled with bold represent the amino acid residues identified with LC/MS/MS under the non-reduced conditions in the absence of β -ME. The cysteinyl residues involved in S-glutathionylation are highlighted with gray and they are C_{226} , C_{367} , and C_{727} . The cysteinyl residues involved in disulfide linkage are C_{554} , and C_{564} . The region labeled with a dotted underline is the N-terminal extension (aa 1-23), which acts as an import sequence and does not exist in the mature protein.

Fig. S3. MS/MS spectra of the protonated molecular ions of S-glutathionylated peptides (*a*) $_{361}$ VDADTLC³⁶⁷TEEVFPTAGAGTDLR₃₈₂, and (*b*) $_{713}$ AVTEGAHAVEEPSIC⁷²⁷.

Fig. S4. Effect of complex I-mediated O_2^{\bullet} generation on the ratio of GSH/GSSG (*in A*) and the enzymatic activity of complex I (*in B*) under the conditions of enzyme turnover in the presence of GSH. The reaction mixture is as described in the legend of the Figure 1. The concentrations of GSH/GSSG and the enzymatic activity of complex I were measured after 1 h incubation at 37° C.

Fig. S5. Amino acid sequence of the precursor of the complex I-75 kDa subunit. The regions labeled with bold represent the amino acid residues identified with LC/MS/MS under the reduced conditions in the presence of β -ME. The cysteinyl residues involved in protein radical formation are underlined and they are C_{226} , C_{554} , and C_{727} . The region labeled with a dotted underline is the N-terminal extension (aa 1-23), which acts as an import sequence and does not exist in the mature protein.

Fig. S6. MS/MS spectrum of the triply protonated molecular ion of DMPO-binding peptide $_{544}\rm MLFLLGADGG\underline{C^{554}}ITR_{557}$.

Fig. S7. MS/MS spectra of the doubly protonated molecular ions of S-sulfonated peptides. a, ₇₁₃AVTEGAHAVEEPSIC(SO₃)⁷²⁷. b, ₅₄₄M(ox)LFLLGADGGC⁵⁵⁴(SO₃)ITR₅₅₇.

Fig. S8. The homology model of 75 kDa (pale green) subunit of Complex I. FMN (magentas sticks) and ironsulfur clusters (orange-yellow spheres) are also shown for orientation. There are total 17 highly conserved cysteines in mature mammal 75 kDa subunits. According to our multiple sequence alignment results (data not shown), 11 of the 17 cysteines are identical to the Nqo3 subunit of *T. thermophilus*, and directly involved in the coordinates or ligands of the iron-sulfur clusters, and they are highlighted with magentas sticks. The other 6 cysteines (C_{53} , C_{367} , C_{554} , C_{564} , C_{710} and C_{727}) are labeled and highlighted in blue-yellow spheres. Except C_{53} , all other five active cysteines are surface exposed according to the homology model.

Fig. S9. The effect of different dosages of menadione (0-100 μ M) on the HL-1 cellular S-glutathionylation (*in A*) and protein radical adduct of DMPO (*in B*) measured by immunomicroscopic fluororescence using anti-GSH or anti-DMPO monoclonal antibody.

Fig. S10. Amino acid sequence coverage of the precursor of the 75 kDa subunit from the alkylated control complex I as analyzed by nano-LC/MS/MS. The regions labeled with *italic* bold and represent the amino acid

residues identified with LC/MS/MS under the non-reduced conditions in the absence of β -ME. The cysteinyl residues involved in disulfide bond are detected between C_{554} , and C_{564} . Iodoacetamide alkylation was detected at all cysteine residues except C_{64} and C_{710} which were not observed by MS/MS. The region labeled with a dotted underline is the N-terminal extension (aa 1-23), which acts as an import sequence and does not exist in the mature protein.

Supplemental Fig. S1

Complex I (NQR) Α

1	MLRIPVRKAL	VGLSKSSKGC	VRTTATAASN	LIEVF VDGQS	VMVEPGTTVL
51	QACEK VGMQI	PR FCYHER LS	VAGNCRMCLV	EIEKAPKVVA	ACAMPVMK GW
101	NILTNSEK TK	KAREGVMEFL	LANHPLDCPI	CDQGGECDLQ	DQSMMFGSDR
151	SRF LEGKRAV	EDKNIGPLVK	TIMTRCIQCT	RCIR faseia	GVDDLGTTGR
201	GNDMQVGTYI	EK MF MSELSG	NIIDICPVGA	\mathbf{L} TSKPYAFTA	RPW ETRKTES
251	IDVMDAVGSN	IVVSTRTGEV	M RILPR MHED	INEEWISDKT	RFAYDGLKR Q
301	R LTEPMVRNE	KGLLTHTTWE	DALSRVAGML	QSFQGNDVAA	IAGGLVDAEA
351	LIALKDLLNR	VDSDTLCTEE	VFPTAGAGTD	LRSNYLLNTT	IAGVEEADVV
401	LLVGTNPRFE	APLFNAR IR K	SWLHNDLKVA	LIGSPVDLTY	RYDHLGDSPK
451	ILQDIASGSH	PFSQVLQEAK	KPMVILGSSA	LQRNDGAAIL	AAVSNIAQKI
501	RTSSGVTGDW	KVMNILHRIA	SQVAALDLGY	KPGVEAIQKN	ppkmlf LLGA
551	DGGCITRQDL	PKDCFIVY QG	HHGDVGAPIA	DVILPGAAYT	EK SATYVNTE
601	GRAQQTKVAV	TPPGLAREDW	KIIRALSEIA	GMTLPYDTLD	QVRNRLEEVS
651	PNLVRYDDVE	GANYFQQASE	LSKLVNQQLL	ADPLVPPQLT	IKDFYMTDSI
701	SRASQTM AKC	VK avtegaha	VEEPSIC		

Sequence coverage=511/704=72.58%

Supplemental Fig. S3a

m/z=1301.85²⁺

Supplemental Fig. S3b

В

1	MLRIPVRKAL	VGLSKSSKGC	VRTTATAASN	LIEVF VDGQS	VMVEPGTTVL
51	QACEKVGMQI	PRFCYHERLS	VAGNCRMCLV	EIEKAPKVVA	ACAMPVMKGW
101	NILTNSEKTK	KAREGVMEFL	LANHPLDCPI	CDQGGECDLQ	DQSMMFGSDR
151	SRF LEGKRAV	EDKNIGPLVK	TIMTR CIQCT	r CIR faseia	GVDDLGTTGR
201	GNDMQVGTYI	EKMFMSELSG	NIIDICPVGA	LTSKPYAFTA	RPWETRKTES
251	IDVMDAVGSN	IVVSTRTGEV	MRILPRMHED	INEEWISDKT	RFAYDGLKRQ
301	RLTEPMVRNE	KGLLTHTTWE	DALSRVAGML	QSFQGNDVAA	IAGGLVDAEA
351	LIALKDLLNR	VDSDTLCTEE	VFPTAGAGTD	LRSNYLLNTT	IAGVEEADVV
401	LLVGTNPRFE	APLFNAR IR K	SWLHNDLKVA	LIGSPVDLTY	RYDHLGDSPK
451	ILQDIASGSH	PFSQVLQEAK	KPMVILGSSA	LQRNDGAAIL	AAVSNIAQKI
501	RTSSGVTGDW	KVMNILHRIA	SQVAALDLGY	KPGVEAIQKN	PPKMLFLLGA
551	DGGCITRQDL	PKDCFIVYQG	HHGDVGAPIA	DVILPGAAYT	EKSATYVNTE
601	GRAQQTKVAV	TPPGLAREDW	KIIRALSEIA	GMTLPYDTLD	QVRNRLEEVS
651	PNLVRYDDVE	GANYFQQASE	LSKLVNQQLL	ADPLVPPQLT	IKDFYMTDSI
701	SRASQTMAKC	VKAVTEGAHA	VEEPSIC		

Sequence coverage=679/704 =96.44%

Supplemental Fig. S6

 $m/z_{(\text{theoretical})} = 526.6108^{3+}$ $m/z_{(\text{measured})} = 527.03^{3+}$

Supplemental Fig. S7a

713**A V** $\begin{bmatrix} y^{13} \\ E \\ b^4 \end{bmatrix} G \begin{bmatrix} y^{10} \\ A \\ b^6 \end{bmatrix} \begin{bmatrix} y^9 \\ H \\ b^7 \end{bmatrix} \begin{bmatrix} y^8 \\ A \\ b^8 \end{bmatrix} \begin{bmatrix} y^7 \\ V \\ b^9 \end{bmatrix} \begin{bmatrix} y^6 \\ E \\ b^{10} \end{bmatrix} \begin{bmatrix} y^4 \\ P \\ b^{12} \end{bmatrix} \begin{bmatrix} S \\ b^{13} \end{bmatrix} \begin{bmatrix} C^{727} \\ B^{14} \end{bmatrix} \begin{bmatrix} C^{727} \\ (SO3) \end{bmatrix}$

m/z=766.18²⁺

Supplemental Fig. S7b

Supplemental Fig. S9

Red: Alexa Fluor 594 -conjugated goat anti-mouse IgG Blue: DAPI staining of nuclear

Supplementary Fig. S10

1MLRIPVRKALVGLSKSSKGCVRTTATAASNLIEVFVDGQSVMVEPGTTVL51QACEKVGMQIPRFCYHERLSVAGNCRMCLVEIEKAPKVVAACAMPVMKGW101NILTNSEKTKKAREGVMEFLLANHPLDCPICDQGGECDLQDQSMMFGSDR151SRFLEGKRAVEDKNIGPLVKTIMTRCIQCTRCIRFASEIAGVDLGTTGR201GNDMQVGTYIEKMFMSELSGNIIDICPVGALTSKPYAFTARPWETRKTES251IDVMDAVGSNIVVSTRTGEVMRILPRMHEDINEEWISDKTRFAYDGLKRQ301RLTEPMVRNEKGLLTHTTWEDALSRVAGMLQSFQGNDVAAIAGGLVDAEA351LIALKDLLNRVDSDTLCTEEVFPTAGAGTDLRSNYLLNTTIAGVEEADVV401LLVGTNPRFEAPLFNARIRKSWLHNDLKVALIGSPVDLTYRYDHLGDSPK451ILQDIASGSHPFSQVLQEAKKPMVILGSSALQRNDGAAILAAVSNIAQKI501RTSSGVTGDWKVMNILHRIASQVAALDLGYKPGVEAIQKNPFKMLFLLGA511DGGCITRQDLPKDCFIVYQGHHGDVGAPIADVILPGAAYTEKSATYVNTE601GRAQQTKVAVTPPGLAREDWKIIRALSEIAGMTLPYDTLDQVRNRLEEVS651PNLVRYDDVEGANYFQQASELSKLVNQQLLADPLVPPQLTIKDFYMTDSI701SRASQTMAKCVKAVTEGAHAVEEPSIC

Sequence coverage = 634/704=90.05%

Supplementary Table

∆m between y-n and	Fragment	Measured	Sequence	Measured	Fragment	∆m between bn
yn-1	lon	m/z		m/z	lon	and bn-1
			Met _(OX)			
			Leu	261.02	b ₂	
146.76	y ₁₂	1254.59	Phe	408.15	b ₃	147.13
113.36	y 11	1107.83	Leu	521.28	b ₄	113.13
113.14	y 10	994.47	Leu	634.27	b ₅	112.99
56.81	y 9	881.33	Gly	691.39	b ₆	57.12
186.2 (115+71)	y 8	824.52	Ala			
			Asp	877.41	b ₈	186.02 (71+115)
56.88	y 6	638.32	Gly	934.33	b ₉	56.92
57.17	y 5	581.44	Gly	991.42	b ₁₀	57.09
135 (103+32)	y 4	524.27	Cys _(SO2)	1126.41	b ₁₁	134.99 (103+32)
113.19	y ₃	389.27	lle	1239.46	b ₁₂	113.05
	y ₂	276.08	Thr	1340.80	b ₁₃	
			Arg			

A. Detailed MS/MS map of $_{544}M_{(OX)}LFLLGADGGC_{(SO2)}^{554}ITR_{557}$

B. Detailed MS/MS map of 713 AVTEGAHAVEEPSIC_(SO2) 727

∆m between yn and	Fragment	Measured	Sequence	Measured	Fragment	∆m between bn
yn-1	lon	m/z		m/z	lon	and bn-1
			Ala			
			Val			
99.82	у 13	687 . 50 ⁺²	Thr	272.26	b ₃	
128.98	y ₁₂	637 . 59 ⁺²	Glu	401.22	b ₄	128.96
57.78	У 11	573 . 13 ⁺²	Gly	458.61	b ₅	57.39
71.11	y 10	1087.48	Ala	529.29	b ₆	70.68
137.08	y 9	1016.37	His	666.41	b ₇	137.12
70.75	y 8	879.29	Ala			
99.23	y 7	808.54	Val	836.44	b ₉	170.03 (71+99)
129.07	y 6	709.31	Glu	965.40	b ₁₀	128.96
129.01	y 5	580.24	Glu	1094.48	b ₁₁	129.08
	y 4	451.23	Pro	1191.53	b ₁₂	97.05
			Ser	1278.58	b ₁₃	113.28
			lle	696.43 ⁺²	b ₁₄	
			Cys _(SO2)			