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1 Supplementary Information

1.1 Overall stoichiometries of the five subnetworks of Escherichia
coli iJR904 growing on glucose

Subnetwork 1

- 0.007 ade + 6.92797 adp - 2.3025 amp - 4.64317 atp + 0.0247 datp

+ 0.0254 dgtp + 0.0247 dump - 0.522558 gdp - 0.27841 gmp + 0.775568 gtp

+ 0.524 h + 0.0748 h2o + 0.517 n2dr1p + 0.524 pi - 0.524 r1p + 0.5918 trdox

- 0.5918 trdrd - 0.0528 udp - 0.3511 ump + 0.3792 utp

Subnetwork 2

- 0.00273 aspL + 0.367362 co2c - 0.3151 dhorS - 0.367362 forc + 2.45148 fum

+ 0.05 glx - 0.05 glyclt - 1.10209 hc + 0.734724 he + 0.00273 iasp

+ 0.3151 orot - 2.81931 q8 - 0.367362 q8c + 2.81931 q8h2 + 0.367362 q8h2c

- 2.45148 succ

Subnetwork 3

7.1434 adp - 7.1434 atp + 8.06593 dhap - 8.06593 f6p + 8.06593 g3p

+ 7.1434 h - 0.922533 pep + 0.922533 pyr

Subnetwork 4

0.194309 adp - 0.194309 atp - 0.194309 cdp + 0.168909 ctp + 0.0254 dctp

+ 0.0254 h2o + 0.0254 trdox - 0.0254 trdrd

Subnetwork 5

- 0.3213 accoa + 0.3213 actACP + 0.3213 co2 + 0.3213 coa - 0.3213 h

- 0.3213 malACP
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1.2 The subnetworks of iJR904 and iAF1260 growing on glu-
cose

The subnetworks, rays and linealities for all the genome scale reconstructions mentioned
in the main article text are available online (http://code.google.com/p/memesa-tools).

Subnetwork 1 (24 vertices)
R_UMPK R_URIK2 R_DGK1 R_NDPK8 R_NDPK6 R_NDPK5

R_NDPK2 R_NDPK1 R_RNDR4 R_RNDR2 R_RNDR1 R_URIDK2r

R_DURIPP R_GK1 R_NTD8 R_NTD1 R_DADK R_NTD6

R_PUNP4 R_PUNP1 R_PUNP3 R_PYNP2r R_ADNK1 R_ADK1

R_RNTR4 R_PUNP2 R_RNTR2 R_RNTR1 R_GSNK

Subnetwork 2 (90 vertices)
R_DHORD5 R_FDH3 R_FDH2 R_DHORD2 R_SUCD4 R_GLYCTO4

R_ASPO4 R_GLYCTO2 R_GLYCTO3 R_FRD3 R_FRD2 R_HYD3

R_HYD2 R_FHL R_SUCD1i R_HYD1 R_ASPO5 R_ASPO3

Subnetwork 3 (2 vertices)
R_PYK R_PFK R_DHAPT R_FBA R_F6PA

Subnetwork 4 (2 vertices)
R_NDPK7 R_NDPK3 R_RNDR3 R_RNTR3

Subnetwork 5 (2 vertices)
R_KAS14 R_KAS15 R_ACOATA

Table 1: The fluxes and subnetworks of iJR904 (with glucose as a sole carbon source
and optimal growth rate of one) and the number of unique vertex flux distributions
that that occur in each subnetwork (total number of vertices 17280).
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Subnetwork 1 (1296 vertices)
R_RPE R_ACt2rpp R_GLYCLTt4pp R_THRt4pp R_GLUt4pp R_EX_for_e

R_RPI R_PTAr R_GLUt2rpp R_GLYCTO2 R_GLYCTO3 R_GLYCTO4

R_GHMT2r R_PYK R_PGM R_PGL R_PGK R_PGI

R_NADH18pp R_CO2tex R_TPI R_SERt4pp R_TKT1 R_TKT2

R_PGCD R_DHORD2 R_MTHFD R_MTHFC R_GAPD R_DHORD5

R_NADH16pp R_PSERT R_THRt2rpp R_GART R_NADH17pp R_GLYCL

R_F6PA R_MDH R_CO2tpp R_PDH R_SUCOAS R_H2Otpp

R_PSP_L R_ACtex R_ICDHyr R_H2Otex R_ACKr R_G6PDH2r

R_DHAPT R_PROt2rpp R_PROt4pp R_ASPO4 R_EX_ac_e R_GLYCLTt2rpp

R_ENO R_ACt4pp R_Htex R_SERt2rpp R_ASPO3 R_PFK

R_ASPO5 R_CS R_EX_h2o_e R_EX_co2_e R_AKGDH R_FBA

R_GLUDy R_ACONTb R_ACONTa R_FUM R_GND R_GARFT

R_FORtex R_FRD3 R_FRD2 R_SUCDi R_TALA R_ATPS4rpp

R_FORtppi R_EX_h_e

Subnetwork 2 (324 vertices)
R_GTHOr R_PRPPS R_RNDR2b R_PPKr R_RNDR4b R_NDPK8

R_NDPK7 R_NDPK6 R_GRXR R_NDPK3 R_NDPK2 R_NDPK1

R_RNDR4 R_RNDR2 R_RNDR3 R_RNDR1 R_RNDR1b R_FLDR

R_RNDR3b R_PAPSR2 R_RNTR1c R_RNTR3c R_ADPT R_TRDR

R_PUNP1 R_ADK3 R_ADNK1 R_PAPSR R_RNTR2c R_RNTR4c

R_PPM R_NDPK5

Subnetwork 3 (2 vertices)
R_DMPPS R_IPDPS R_IPDDI

Subnetwork 4 (2 vertices)
R_KAS14 R_KAS15 R_ACOATA

Table 2: The identity of the fluxes that appear in the subnetworks of iAF1260 (with
glucose as a sole carbon source and optimal growth rate of one) and the number of
unique vertex flux distributions that that occur in each subnetwork (total number of
vertices 1679616).
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Mathematical background: polyhedra

Consider the LP representing the FBA as expressed in the Methods section. We repre-
sent the set of inequalities here by Av ≥ b.

maximize f(v) = cv

subject to Av ≥ b (1)

Optimal solutions of FBA programs are hardly ever unique. For analyzing the
structure of the space of all optimal fluxes, we define some concepts. A linear combi-
nation of vectors v1, v2, . . . , vk is defined as any vector v =

∑k
i=1 λivi for any constants

λ1, λ2, . . . , λk. It is a positive linear combination if λi ≥ 0, i = 1, . . . , k and a convex
combination if 0 ≤ λi ≤ 1, i = 1, . . . , k and

∑k
i=1 λi = 1.

The set of optimal solutions of a FBA problem is a convex set, which means that it
contains every convex combination of every set of its points. Because it is defined by
a finite number of linear equalities and inequalities (the constraints in the LP (1) plus
the constraint that the objective value of the LP is equal to the optimal value) it is a
polyhedron (or polytope, when bounded, i.e., when none of the fluxes can reach minus
or plus infinity) [12]. This description of a polyhedron is called the “outer description.”

Any polyhedron has another description, the “inner description,” as the Minkowsky
sum of three sets. The first is a lineality space, which are all the flux vectors that
satisfy the steady state constraints and have zero flux on all irreversible and all bounded
reactions; i.e., in terms of the compressed description of the feasible set of (1), all flux
vectors in {v | Av = 0}, the null-space of the matrix A. For any flux v in this space
and any optimal flux v′, the flux v′+µv is also optimal for every value of µ. This space
is a linear subspace and is characterized by a, usually non-unique, set of basis vectors,
their number being equal to the dimension of this subspace. We call the basis vectors
linealities and they can be chosen to correspond to fully matter-preserving reversible
cycles in the network.

Projecting the polyhedron onto the orthogonal of the lineality space through any
feasible point gives a polyhedron with extreme points and extreme rays. Given this
projection, the second set is a cone, which is the set of flux vectors that satisfy the
steady state constraints and have positive value on reactions bounded from below but
not from above, in particular irreversible reactions, and zero flux on reactions with
fluxes bounded from above, in particular the fluxes that are prefixed (e.g. the prefixed
growth rate). For any flux v in this cone and any optimal flux v′, the flux v′ + νv is
also optimal for every value of ν > 0. A cone is characterized by a set of extreme rays,
elements of the cone that can not be expressed as a positive linear combination of any
other elements of the cone. Every element of the cone is a positive linear combination
of rays. Rays correspond to fully matter-preserving irreversible cycles in the network.

Again given the projection, the third set is a polytope, which is the set of all convex
combinations of its vertices, which are feasible and optimal flux vectors, i.e. optimal
vectors in {v | Av ≥ b}, that cannot be written themselves as the convex combination
of any other two vectors with this property. Hence, vertices do belong to the optimal
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solution space. The polytope is completely characterized by the set of vertices in the
sense that any element of the polytope can be expressed as a convex combination of
its vertices. Any optimal flux vector can then be written as a linear combination of
the linealities plus a positive linear combination of the rays of the cone plus a convex
combination of the vertices of the polytope. For more details about polyhedra we refer
the reader to standard mathematical texts such as [14, 12].

As a final note, linealities and rays could in principle also correspond to paths
in the network from some non-nutrient metabolite to some non-biomass metabolite,
which are modeled to be present in fixed concentration. Such parts of the network are
at best irrelevant in FBA analysis and therefore should be ignored or even deleted. In
the networks we analyzed we never encountered linealities or rays of this kind. We
emphasize that the elements of the lineality space and the cone do not belong to the
optimal solution space; they merely tell the directions in which the optimal solution
space is unbounded.

1.3 Analysing genome scale models

1.3.1 Preparing models for characterization

The following procedure was followed that prepared genome scale stoichiometric models
for enumeration. All models and software referred to in this document, as well as
detailed instructions on how to install and use the enumeration pipeline are available
on the MEMESA Tools web site (http://code.google.com/p/memesa-tools).

First the reconstruction (e.g. E. coli iJR904 [9] obtained from the BiGG database
[11]) was downloaded as a fully compartmentalized model in the SBML dialect com-
patible with the COBRA Toolkit [6, 10] and then converted into SBML Level 2 with
FBA annotation [3] suitable for use in the PySCeS-CBM constraint based modelling
framework [8, 7]. Next it was scanned for reactions that have an exact matching stoi-
chiometry (ignoring reversibility and reagent order). For example, in iJR904 one of the
nine pairs of redundant reactions involves adenosine (adn) transport via a proton (h)
symport:

R_ADNt2r: adne + he ←→ adnc + hc

R_ADNt2: adne + he −→ adnc + hc

Note how the two reactions differ only in the one being reversible (R_ADNt2r) and the
other irreversible (R_ADNt2). When such a redundant pair of reactions was found, the
irreversible reaction was deleted.

For each model thus processed an uptake flux of a single carbon source was de-
termined such that an optimal biomass production flux of one unit was obtained. In
iJR904 this resulted in the maximum uptake rates of glucose (R_EX_glc_(e)) and thre-
onine (R_EX_thr_L_(e)) being set as -11.64 and -69.80 units respectively. Any artificial
infinity constraints (see 1.5) were removed by scanning though all reaction flux bounds
and deleting any one found to have an “infinite” value (for iJR904 this is ±999999). The
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model was then exported and saved to disk as a rational linear program in H-format
compatible with (amongst others) the CDDR+ software [4] which could then be used
as an input for the enumeration pipeline (as described in 1.3.2).

1.3.2 Characterization of polyhedra

For sake of completeness, we repeat here a detailed description of the method to enu-
merate all vertices, rays and linealities of the optimal flux balance solution space.

1. Compute the FBA optimum. We formulate the FBA program as the linear
programming (LP) problem described in the main text. We solve the LP using
QSOpt ex version 2.5.0 [2], a rational LP-solver. Let Z∗ be the optimal FBA
value.

2. Formulate the optimal FBA set. This is done simply by replacing the objec-
tive in the LP by the optimality restriction f(v) ≥ Z∗. We write this constraint
together with the set Av ≥ b of all constraints (as described in the Methods
section) shortly as Dv ≥ d.

3. Perform Flux Variability Analysis (FVA). For each flux vj, j = 1, . . . , r we
solve, using QSOpt ex, two linear programs: F+

j = {max vj | Dv ≥ d} and
F−j = {min vj | Dv ≥ d}.

4. Remove fixed fluxes. For each variable vj for which F+
j = F−j , remove from D

the corresponding column Dj and subtract F+
j Dj from d. Delete the rows that

have now become all-0-rows. Let the new system be D′v′ ≥ d′.

5. Compute a basis for the lineality space. The lineality space of the polyhe-
dron is given by the null-space of D′, i.e., all solutions to the system D′v′ = 0.
Compute a basis for this linear subspace using a linear algebra library (such as
JLinAlg [1]).

6. Compute rays and vertices of the system D′v′ ≥ d′. For genome-scale
systems we use the enumeration program Polco (version 4.2.0) for this [13].
Note that Polco automatically detects whether the system has a lineality space,
but it does not report a basis for it, it only returns rays and vertices.

7. Reintroduce the fixed fluxes that were removed earlier. In each of the
vertices reintroduce the fluxes that are fixed across all optima and were removed.
Note the latter fluxes have value 0 in rays and linealities.

1.4 Determining metabolic modules/subnetworks

The analysis of the enumeration pipeline output, as described above, was performed
with custom scripts developed using the Python based PySCeS-CBM framework [7].
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One of the greatest challenges in this process was developing efficient analysis algo-
rithms that could deal with the size and complexity of genome scale reconstruction
enumerations. While core and reduced models may be analyzed by hand, genome scale
reconstructions typically have large and complex metabolic networks e.g. iAF1260 has
over 2000 reactions and over a million vertices. In order to overcome this problem
the data generated in the enumeration pipeline was converted to and stored using the
Hierarchical Data Format version 5 (http://www.hdfgroup.org/HDF5).

The complete metabolic subnetwork/module analysis was performed in three steps
and the tools, data files and a worked example based on the analysis of iJR904 are avail-
able on the MEMESA Tools web site (http://code.google.com/p/memesa-tools).

1.4.1 Data transformation and integration

The first step takes as input the rational-arithmetic FVA and enumeration results gen-
erated by the enumeration pipeline (see Section 1.3.2) as well as the original SBML
model definition used to generate the H-format model descriptions. This data is then
converted into a floating point HDF5 data structure containing the ray, lineality and
vertex vectors using the H5Py package (http://alfven.org/wp/hdf5-for-python).
Once translated the vertex array K is scanned for constant/variable fluxes and this
information is exported as meta-data to be used in subsequent analyses.

1.4.2 Calculating the correlation between variable fluxes

We now generate a sub-matrix K′ by removing the fixed fluxes from the vertex matrix
K. Using K′ the correlation coefficients are calculated using the Numerical Python
(http://numpy.scipy.org) algorithm numpy.corrcoef which are then stored as the
correlation coefficient matrix, P.

1.4.3 Determining metabolic subnetworks/modules

To determine the metabolic modules/subnetworks we first define the adjacency matrix
A of a graph with nodes the indices of the rows (columns) of P: Am,n = 1 if and only
if Pm,n 6= 0, and Am,n = 0 otherwise. From A the connected component subgraphs
S1 . . . Sn are determined and extracted using the NetworkX package [5]. Each sub-
graph, corresponds to a metabolic module/subnetwork whose nodes are fluxes. For
each metabolic module/subnetwork a pattern matching algorithm is used to determine
the number of unique flux distributions that occur within a particular module, across
all vertices. These vertices represent the intra-module variability.

1.5 The consequences of artificially transforming the lineality
space and rays into vertices

Often, flux infinity constraints (vj ≤ ∞ and −∞ ≤ vj) are encoded by choosing a
sufficiently large constant M to represent infinity, we henceforth call such constraints
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“artificial infinity bounds”. This procedure will not affect the solution to the FBA
program as long as M is larger than any realistic values fluxes in the system could take.
We simulated this by augmenting the FBA program for the toy model described in the
main text with constraints to place an upper bound of 1000 on all fluxes, and a lower
bound of -1000. Clearly, the FBA optimum remains 1. We let P ′ denote the space of
all solutions which attain this optimum. Recall that P , the polyhedron defined in the
previous system, had a lineality space of dimension 2, 1 ray and 4 vertices. In contrast,
P ′ has neither a lineality space nor rays, because all reactions are bounded above
and below by 1000 and -1000 respectively. P ′ is a polytope and its inner description
comprises of only vertices. For this we used the rational-arithmetic variant of the CDD
software (CDDR+) [4] to generate the vertices which reports 32 vertices. In this case,
the origin of the vertices of P ′ is clear. Informally they are obtained by choosing one of
the 22 = 4 vertices of P , then deciding whether to have the single ray of P contribute as
little as possible (i.e. multiplicative coefficient 0) or as much flux as possible (coefficient
999), and then deciding whether to run each basis vector of the lineality space of P
as much as possible in one direction (coefficient 1000) or the other (coefficient -999).
This gives rise to 222122 = 32 vertices. The details of the this analysis and results are
available on the MEMESA Tools website http://code.google.com/p/memesa-tools.

The relationship between the (number of) vertices of a system with artificial infinity
bounds, and the lineality space, rays and vertices of the same system without those
bounds, will in general be more complex than in this simple example. However, it is
clear that the former can very easily grow exponentially quickly with regard to the
latter, and obfuscate the true structure of the unbounded polyhedron. For this reason
artificial infinity bounds should be avoided to allow for explicit identification of the
lineality space and rays.

Identification of metabolic subnetworks

Here we describe how we computationally identify metabolic subnetworks from a de-
scription of all the vertices of a polyhedron representing an optimal FBA set. In the
last section, we described how these vertices can be obtained. A vertex is a flux vector,
i.e. it has flux values as entries, and it has as many entries as there exist reactions
in the network, i.e. r. We define K as the matrix that contains all the vertices as
its columns and Ki as its i-th column. We remove the rows of K that refer to the
reactions that have fixed flux values across all FBA optima to obtain K′. From K′ we
would like to identify subnetworks that display independent flux variability in the FBA
optimum. These subnetworks have the following properties: (i) they contain reactions
that inter-convert a set of metabolites, such that all these reactions in the subnetwork
are linked via a path of reactions, (ii) they have input and output reactions with fixed
fluxes (fixed to their values of the FBA optimum), (iii) they have fixed overall reaction
stoichiometry (because subnetworks communicate with the remainder of the metabolic
network through a set of fixed fluxes), (iv) subnetworks are connected by paths of reac-
tions that carry fixed fluxes and (v) multiple routes exist inside subnetworks that give
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rise to the subnetwork’s overall reaction stoichiometry.
Which reactions constitute the subnetworks and their overall reaction stoichiometry

depends on the specific FBA problem. If two reactions occur in the same subnetwork
(and are not input or output fluxes), they have flux variability in the FBA optima and
their flux values across all the vertices will correlate: they have correlation coefficient 1
when they always occur in the same optimal flux route(s) of the subnetwork, correlation
coefficient -1 when they exclusively carry flux in alternative routes within the subnet-
work, and correlation coefficients between -1 and 1 otherwise. Two reactions that occur
in different subnetworks will have correlation coefficient 0. Hence, we can identify the
subnetworks by determining the Pearson’s correlation coefficients of the flux values of
all the pairs of reactions in K′. In all the cases that we analyzed we found that the
reactions that correlated formed a connected subnetwork of the network consisting of
the variable reactions only.
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