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1. Summary of the Supplemental Materials. This supplemental
material includes:

1. Tables of the standard errors of simulation results presented in Table
1 and Table 2.

2. Propositions on Hessian matrix and the convergence of the algorithm.

3. Asymptotic results when p and ¢ are fixed when n — co.

4. Rates of convergence of the estimates and sparsistency as p, and ¢,
diverge.

5. Proofs of Lemmas and Theorems.

2. Tables of Standard Errors of Simulation Results.
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4 YIN AND LI

3. Propositions on Hessian Matrix and Convergence of the Al-
gorithm. We first study the log-likelihood function without the penalty
term as a function of the matrix parameter = = (6,I"). Denote

[(E) = —loglik = —logdet © + tr|Cy© — CyxI'6 — FCQ/X@ + FCXF’@] .

PROPOSITION 1.  The Hessian matriz of the negative log-likelihood func-
tion I(Z) is

HIE) = olgoe! —2Cyx ® I, +2(I'Cx) ® I,
o\ 2C, @, +2(CxI")® I, 2Cx ® 0O '

In addition, [(Z) is a bi-convex function of I' and ©. In words, this means
that for any fized ©, I(Z) is a convex function of T', and for any T, I(E) is
a convex function of ©.

Proof: It is easy to check that the first and the second derivatives of [(Z)
are

Q= _det 5 detO1r(©71d0) + tr(Cyd®) — 2tr(Cyx OdT)

—2tr(CyxI"d®) + 2tr(CxI'OdI') + tr(I'CxI'dO)
= —tr(071dO) + tr(CydO) — 2tr(C xOdI') — 2tr(Cy xI'dO)
+2tr(CxI'OdT) + tr(T'CxI'dO),

and

(1) d* = tr(071de01dO) — 4tr(C}, xdOdT) + 2tr(Cxdl'OdT)
+3tr(CxI'dOdI') + tr(ICxdl'd®).

wem = (1))

based on the fact that tr ABCD = (vec B') (A’ ® C')vecD, we have

Denote

tr(071d0071d0) (dvec®) (07! @ @7V dveco,
tr(Cy xdOdl') = (dvec®)'(Cyx ® I,)dvecl,
tr(Cxdl'edl'’) = (dvecl')’(Cx ® ©)dvecl’
) (
) (

tr(CxI"dOdr dvec®) (I'Cx @ I,)dvecl’,
tr(CCxdl'dO dvecl')' (CxT" @ I,,)dvec®.
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From the last two equalities, we have tr(CxI"dOdl') = tr(I'Cxdl'dO).
Substituting these equations into (1), we obtain

d?l = (dvec®) (071 ® ©71)dvec® — 4(dvec®) (Cy x ® I,)dvecT
+2(dvecl)'(Cx ® O)dvecl + 4(dvec®) (I'Cx ® I,)dvecl’
= (dvec®) (07! ® O 1)dvec® — 2(dvecO®) (Cy x ® I,)dvecl’
+2(dvec®) (I'Cx ® I)dvecl’ — 2(dvecl’) (Cy x ® I,,)dvec®
+2(dvecl)' (CxI" @ ©)dvecO® + 2(dvecl’)'(Cx ® ©)dvecl

O lgoe! —2Cyx ® I, +2(I'Cx) ® [,
— ((d 9 / d i / p p
((dvec®)', (dvec ))< —2C) @ I, + 2(CxT") @ I, 2Cx ®06
dvecO©
X
dvecl’
9_1 ® @—1 _QCYX ® I, + Q(FCX) ® I,
_ =)/ ; ' -
= (dvecE) ( —2C,  ® I, + 2(CxI") @ I, 2Cx ® 06 dvecz,

from which the result follows.
The proof of bi-convexity is straight-forward. [

PROPOSITION 2. The coordinate descent algorithm minimizing pl(Z) with
respective to I' and © converges to a stationary point of pl(Z).

Proof: Notice that the pl(Z) is differentiable and continuous in Z. Then,
since pl(E) is convex in I' with O fixed and in © with I' fixed, minimiza-
tion with respect to each gradient gives a unique coordinate-wise minimum.
Thus, we have satisfied the conditions of Tseng (2001), Theorem 4.1 (c),
and block coordinate-wise minimization converges to a stationary point of

pl(Z). O

4. Asymptotic Results When p and g Are Fixed. We derive the
asymptotic properties of the proposed estimators that are analogous to those
for the Lasso (Knight and Fu, 2000) and to those for the Gaussian graphical
model (Yuan and Lin, 2007; Fan, Feng and Wu, 2009). Also, we assume
that p and ¢ are held fixed as the sample size n — oo. We assume the
design matrix Cxy = 1/n )" | x;x} is well behaved and meets the regularity
conditions as in Knight and Fu (2000). Specifically, we assume X exists and
is finite.
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THEOREM 1. If v/np — po > 0, /nA — X\o > 0 as n — oo, the Lasso-
penalized estimator for the cGGM is such that

V{(6,1) — (6,T)} — argming_ry v {6(U,V)}
in distribution, where

o(U,V) = tr(USUX) +tr(O0VCxV') +tr{U(A - BI' —TB')}

—tr{®O(VB' + BV')}

+po Z{uz'jsgn(&j)](é?ij #0) + |ui| 1(6;; = 0)}
1]

+20 3 {vigsgn(ig) Ty # 0) + g (5 = 0)},
Y]

in which A is a random symmetric px p matriz such that vec(A) ~ N (0, Ag)
and Ag is such that

cov(aij, ay j1) = cou(yiyj, yuy | X);

and B is a random p x q matriz such that vec(B) ~ N(0,Ap) and Ap is
such that
COU(bZ‘j, bi’,j’) = Zi,i’<CX)j,j’-

Furthermore,
cov(aij, b jr) = cov(yiyj, yur| X)X

Proof: Define

dn(U, V) = —logdet(© + E)

Vn
+t7'{(@+ 55) [CY - CYX(F—I- \‘//ﬁ)/ — (F+ %) IYX
+ (T + \‘//H)CX(F+ \‘//ﬁ)’]}

) LY
+Pizj“9m+\/ﬁ|+)‘izj|%1+\/ﬁ|
+log det(©) — tr{@[cy ~ CyxD' —TClx + rch’]}

—p > 101 = A bl
i i
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Using the same argument as in Yuan and Lin (2007), one can show that

log det(© + 55) —logdet(©) = \}ﬁtr(UE) - %tr(UEUE) + 0(%).
On the other hand,
tr{(e+ \%)[CY ~ Cyx (I + \2)’ ~ T+ \‘//ﬁ)CS/X
(T + \;)CX( \‘/%)’]} - tr{@(Cy ~ CyxI' —TCyy + rch')}
(2) = \}ﬁtr{@[VCXF’ —VCy +TCxV’ — CYXV’]}
—i—\/lﬁtr{U[Cy ~ CyxI" —TCly + FCXF’]}

1 1
—I—Etr{(%VCXV'} + ~tr{U[VCxI’ = VCyy +ICxV' = Cyx V'] }.

nftr{UVCXV/}

Denote P, = Cyx — I'Cyx, then B, = \/nP, — B, where B ~ N(0,Ap)
with cov(bsj, b 1) = 3;i(Cx);, - Similarly, denote @,, = Cy —(X4+I'CxT"),
then A, = vnQ, — A, where A ~ N(0,Ag) with

cov(asj, ayjr) = cov(YWy0) y @y U x),

It is easy to check that cov(ajj,byj1) = cov(Y @y U) ,Y(@) | X)Z ;. Then (2)

can be rewritten as

_ _i / !/ L
(2) = \/ﬁtr{G(VPn + P, V')} + \/ﬁtrUZ

1

+—tr{U[Q, — P,I' — TP,

i 4)

+2tr{OVOXV'} — Lir{UIV P, + PV}
1

+n\/ﬁtr{UVCXV'}.

In addition, we have
PZ |0z] Y | |02_]| Z {UUSQTL zg 9@] 7é 0)

+|uis| I(0i5 = 0)},
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Viq )\
)\%:(Wz’j + 7%| = |vil) = 7 %: {vijsgn(vij) I (vi; # 0)

+|vi I (75 = 0) }.

So n¢y, (U, V) can be rewritten as

ngn(U,V) = tr{USUL} +tr{®@VCxV'} + tr{U[A, — B,I' —TB,]}
—tr{O[VB,, + B,V']}

+\/ﬁpz {uijsgn(eij)l(ﬂij #0) + |ui| 165 = 0)}

+VnA Y {wijsgn(ig) I (g # 0) + vig I (i3 = 0)} + o(1),
i

where An = \/ﬁQn = \/ﬁ(Cy - — FCXFI), Bn = \/ﬁp = \/ﬁ(CYX —
I'Cx) and A, — N(0,Aq), B, — N(0,Ap) as defined before. Therefore,
non(U, V) = ¢(U, V) in distribution. Since both ¢(U, V') and ne¢, (U, V) are
convex and ¢(U, V') has a unique minimum, it follows that

argmin né, (U, V) = v/n(© — 0,17 —T') — argmin ¢(U, V).

g

The next theorem shows that when the adaptive Lasso penalty function is
used for the means and also the concentration matrix and when the tuning
parameters are chosen appropriately, the resulting estimates are consistent
and have the oracle properties in the sense of Fan and Li (2001).

THEOREM 2. Let (©,T) be the mazimizer of (8) with initial consistent
estimator (©,T) and adaptive penalty pen(z) = |z|/|Z|Y for some v > 0. If
n(HN/2p =5 oo, nUTN2N = 00, \/np — 0 and \/nXA — 0 as n — oo, then
Pr(éij =0)—1ifb0;; =0, Pr(455 =0) = 1 if v;5 = 0 and other elements
of O and I' have the same limiting distribution as the maximum likelihood
estimate based on the true means and the true graphical structure.
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Proof: We define ¢, (U, V) as

(U, V) = —logdet(O + \7"3) + tr{(@ + \?) [Cy —Cyx(I'+ \‘;)’
Vv , |4 uzj
_(r+%)cm+(r \F)CX T+ — }+pz|eu| f'

+A Z B Iyij + \/Z%H—logdet(@)

u\

—t"f’{@ [Cy — nyr/ — FCQ/X + FCXF/] }
|‘9@J |'72J|
Z 01 Z ITi

Similar to proof of Theorem 1, we have

non (U, V) = tr{USUS} + tr{@VC <V} + tr{U(4, — B,I' = TB.)}

—tr{®(VB, + B,V')} + np (165 + —2| — |6;5]

{o( )} Z!%I NG ill
Vij

A Y =l + =l = Iigl] +o(1).

Note that éij = Op(n_1/2) if 92']' =0, fi]’ = Op(n_l/Q) if Yij = 0, éij — 91’]’
in probability, I';; — 745 in probability, \/np — 0 and \/nA — 0.
Therefore, if 6;; # 0,

is
\/ﬁ(wlj + ﬁ — |0”‘) — uijsgn(Gij),

then by Slutsky’s theorem we have \/ﬁp|§ij\_“f\/ﬁ(\9ij +uij//n|—10i5]) = 0

If 0, = 0,

Uij

Vn(|0i; + %| —1055]) = Juijl,

and /np|fi;| =7 = /npn?/2(y/n|6;;]) 77, where v/n|0;;| = O,(1). By the Slut-
sky’s theorem, we have v/np|0;;|~7v/n(|0i; + uij/v/n| — |0i;]) — oo. Similar
results hold for the corresponding term of 7;;. By the Slutsky’s theorem, we
have that no, (U, V) —4 ¢(U, V) for every (U, V), where

(U, V) = trUSUS+trOV Cx V'+tr{U(A—BI'-T B')}—tr{©(V B'+BV")}

if U=U" such that u;=0 if 6;; =0, and v;; =0, if =
0, and ¢(U, V') = oo, otherwise. Since ¢ is convex, the minimizer of ¢ satisfies
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uj; = 01if 0;; = 0, v;; = 0 if ;; = 0. The Rrogf is now completed if we note
that the maximum likelihood estimator (©,I") for the true graph and true
mean model (V, E = (6;; #0)),I" = (vi; # 0) is such that

Vn((6frue Tirey — (9,1)) — argmin{tr{UZUE} +tr{OVCx V')

+4r{U(A - BI' ~TB)} — tr{0(VB' + BV")}}

in distribution, where the minimum is taken over all symmetric matrices U
such that u;; = 0 if 6;; = 0 and p x ¢ matrices V' such that v;; = 0 if v;; = 0.
O

5. Main Theoretical Results and Assumptions when p,, and q,
Diverge. We denote the support of the true concentration matrix ¥ 1=
©o = (6i5) as S = {(4,5) : ¢ # j, i # 0} and the support of the true
regression coefficient matrix I'g = (v45) as T = {(¢,7) : vi; # 0}. Let s, = | S|
and k, = |T| be the cardinality of these two supports. Denote \p,in(A)
and A\pez(A) as the minimum and maximum eigenvalues of a matrix A.
Define || A]|p = \/tr(AT A) as the Frobenius norm of a matrix A. In order to
establish the asymptotic properties of the estimates, we assume the following
regularity conditions: for all n,

(A) There exist constants 71 and 73 such that

0 <71 < Amin(Z0) < Mnaz(Xo) < 12 < o0;

(B) There exists a constant M; such that for all n

)\max(CX) S Ml;

(C) There exists a constant & such that for all n
0 <& < Amin{(Cx ® ©9)7.7};
(D) There exists a constant Cy > 0, such that for all n,
)\max((CX ® O0)re,7{(Cx ® @o)T,T}_l(CX ® 90)T,Tc) < Cy.

Condition (A) is the same as the condition (A) in Lam and Fan (2009),
which bounds uniformly the eigenvalues of ¥y. Condition (B) guarantees
that the design matrix X is appropriately behaved. Since we essentially treat
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the T' matrix as a vector, condition (C) is similar to the conditions (26b)
and (26¢) of Wainwright (2009). Condition (D) imposes a requirement on
the partition of the Hessian matrix corresponding to I' between the relevant
and irrelevant covariates.

The following theorem establishes the rate of convergence of the penalized
likelihood estimates © and I' in Frobenius norm.

THEOREM 3. (Rate of convergence) Assume q,/p, — ¢* < 1. Under
the regularity conditions (A)-(D), iflog p,/n = O(p?), (log p, +logq,)/n =
O()‘?z)7 (pn + Sn)(logpn)k/n = O<1)7 kn(logpn +log Qn>l/n = O(1) for some
k>1andl>1, and ky, = O(s,+p,) , there exists a local minimizer (6,1
of (8) with the Lasso penalty such that |© — ©||% = Op{(pn + sn) log pn/n}
and ||T' = T3 = Op{kn(log p, + log gn) /n}.

Note that the asymptotic bias for O is at the same rate as Lam and Fan
(2009) for sparse GGMs, which is (p,,+s5,)/n multiplied by a logarithm factor
log pn, and goes to zero as long as (p, + s,)/n is at a rate of O{(logp,) "}
with some k > 1. The total square errors for I' are at least of rate k, /n
since each of the k,, nonzero elements can be estimated with rate n~/2. The
price we pay for high-dimensionality is a logarithmic factor log(p,g,). The
estimate I is consistent as long as ky,/n is at a rate of O{(log pp +log ¢n) "'}
with some [ > 1. Here, we refer to the local minimizer as an interior point
within a given closed set such that it minimizes the target function. If the
Hessian matrix HI(Z) is positive definite, the local minimizer becomes the
global minimizer.

To establish the sparsistency of the penalized estimators, we denote || Al =
max{||Az||/||z||,z € RP,z # 0} as the operator norm of a matrix A, || A/
as the element-wise lo, norm of a matrix A, and || Al|| o = maxi<;<p 23:1 la;;
for A = (aij)pxq as the matrix [, norm of a matrix A. By sparsistency, we
mean the property that all parameters that are zero are actually estimated
as zero with probability tending to one (Lam and Fan, 2009). We have the
following theorem on sparsistency of our penalized estimates of I' and ©
when the adaptive Lasso penalty functions are used.

THEOREM 4. (Sparsistency) Under the conditions given in Theorem 3,
and adaptive Lasso penalty peny (vi;) = |vij|/|%ij ™, pen2(Oki) = [Ok1]/10k]"™
for some 1 > 0, 2 > 0, where I' = (%;;) and © = (0y;) are any two e,- and
fn-consistent estimator, i.e., ey||T — Ileo = Op(1), fn||@ Ollcc = Op(1).
For any local mazimizer of (8) (6, F) satisfying |© — O[% = Op{(pn +
su)1ogpu/n}, 16 — B = Op(an), I = T = Op {108, + o5 )/}
and || T— FH\OO = Op(cy) for sequences a, — 0 and ¢, — 0, z'feg%lkn(logpn—i—
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log gn)/n = O(A2) and fy ™ {logpn/n + an + 2cnkn(log pn + log gn)/n} =
O(p?2), then with probability tending to 1, 0;; = 0 for all (i,j) € S¢ and
At = 0 for all (k,1) € TC.

Note that to obtain the sparsistency results of the estimates, we require
a certain rate of convergence for © in both Frobenius and spectral norms
and a certain rate for I" in both Frobenius and matrix lso norms. The lower
bound for the tuning parameter \, for Is is related to en, m and k,, while
the lower bound for tuning parameter p, for O’s is related to not only fn,
12 and a,, but also ¢, and k,. This reflects the fact that the sparsistency
result on the concentration matrix can be affected by the estimates of the
regression parameters.

6. Proofs of The Theorems.
6.1. Proof of Lemmas.

LEMMA 1. Under regularity conditions (A) and (B), let W, X be defined

as in the main text. Then

1 1og pn + log an
max ‘(@W’X)iﬂ—op( ng+0gq>
1<i<pn,1<j<gn N n

Proof: It is easy to check that W’/ ~ N0, I, ® ©~1). This together with
the fact that n"1OW’'X = n~1(X' ® ©)W/ leads to

n'OW'X ~ N(0,n *(X' ® ©)(I, ® 0 1) (X ®0)),
which implies that
y:=n"'OW'X ~ N(0,n'Cx ® ©).

Since the regularity conditions (A) and (B) are assumed to be held, applying
the Chernoff bound, there exist constants Cy and Cy such that P(|y;| > v) <
Cy exp{—Cynv?} for all i = 1,--+ ,ppgn. Then P(maxi<i<p.q, [vi| > v) <
PngnC1 exp{—Conv?}. We choose

v =) 18Pnt 108G,
Con
for arbitrary M, then
[log pr, + 10g g i
P( max | >y —— M) < ————,
( e, I Con ) (Pngn)M—1
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which implies

1 / _ [log py, + log gn
|<i<pn1£j<qn (5 OW X)i5] = Or( n )

LEMMA 2. Under regularity condition (B), let W, X be defined as in
the main text. Then

1 1 1
_max |- W'X);| = Op (\/ngﬁ qu“)
1<i<pn,1<j<qn = N n

Proof: This lemma can be proved using the same argument as the proof of
Lemma 1. O

LEMMA 3. Let | - |lco and ||| - lllco be the element-wise and matriz I
norm of a matriz, then for two matrices A and B, we have

[ABlloo < Il Al oo Bl|oo-

Proof: Observe that |(AB);;| = |abj| < ||Bllsllaill1, where a; is the i-th
row of A while b; is the j-th column of B. [

LEMMA 4. Suppose W is an n X p, data matriz, with each row of W
being independent identically distributed multivariate normal N(0,071). As-
sume ||©||a < 1t for some constant 7y > 0. X is an n X g, constant matriz
with a bounded ls morm in the sense that there exists a constant C7; > 0,
such that |n"1X'X||y < C1. Assume p,/n = o(1) and there exists the limit
Gn/Pn — Yy, where y € (0,1). Then

1
| X' WOW'X |z = op(L),

and

1
|-OWX]l> = op(1).

Proof: Since 00710 = 0, trOO©~! = p,,, then by Exercise 3.4.10 in Mar-
dia et al. (1979), WOW' ~ W,,(I,,pn), where W, (I, p,) denotes for the
Wishart distribution. Then n !X'WOW’'X ~ W, (n"1X'X, p,). Then the
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distribution of (np,) ' X'WOW'X is the same as a sample covariance ma-
trix of p, observations from the ¢, x 1 multivariate normal distribution
N,, (0,n71X’X). Since |[n7!X'X|s < C4, using the same argument as in
the proof of Lemma 3 in Lam and Fan (2009) and Theorem 5.10 in Bai and
Silverstein (2006), with the condition ¢,/p, — y, where y € (0,1), we have

HLX’WGW’X - lX’XH — 0p(1)
npn n 2
so ||(npn) TX'WOW'X|]2 < Cy + Op(1) = Op(1). Since p,/n = o(1),

then Hn_zX’W@W’XH2 = pn/nH(npn)_lX’WGW’XH2 = op(1). For the
second part, since

[rowx], = e Gerwx],

1
< [|6%2],]|- e W],

_ 1
<7 1/2\/HHQX’W@W’X]2 = op(1).

Thus we proved the lemma. [
Note that when the conditions in Theorem 3 are satisfied, then the conditions
in Lemma 4 are satisfied and can be applied.

6.2. Proof of Theorem 3. Similar to Lam and Fan (2009), let U be a
symmetric matrix of size p,, Dy be its diagonal matrix and Ry = U — Dy
be its off-diagonal matrix. Let S be the support of ©’s off-diagonal entries
(©)ix; and s, = |S| be its cardinality. Let V' be a p-by-¢ matrix and T be
the support of the matrix I' as defined before and T be its complement
T¢={(i,j): 1 <i<p1<j<q}\T. Let k, = |T| be the cardinality of T'.
Set Ay = apRy + Bn Dy, Ay = v Vr + 0, Vre. We will show that, for

o, = /Snlog(pn)ﬁn:\/W’%:\/knlog(pn)ﬂog(qn)’
n n n

and 6, = o(yy), and for a set &7 defined as

o ={(U,V): |Av|E = Clan+C36,, |(Av)TlE = Cing, I(Av)rell7 = Cion},

P( inf ¢O©—+A;T+A o.T 1
((U}Vn)wq( + Ay, T +Ay) >¢(0,1)) = 1,

for sufficiently large constants C7, Co, C3 and Cy. This implies that there is a
local minimizer in {(©+Ay, T+Ay) : |Ap||% < CEa2+C382, ||[(Av)r|/% =
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C3va, [(Av)re|} = €362} such that [|© —O)||r = Op(an+B,), [T —Tr =
Op(7yn) for sufficiently large n.

In the following argument, let S¢ = {(i,5) : i # j} \ S. Consider ©; =
O + Ay, I't =T + Ay, the difference

q(©1,11) —q(O, 1) =L + Iy + I3+ 14 + I,
where
L = tI‘{(Cy — CYXF/1 — Flcg/X + Flcxrll)@l}
—tI‘{(CY — nyl_‘/ — FC/YX + PCXF/)@}
—log det(O1) + log det(O),
Iy = pn Z (16351 = 10351),
(i,5)€S°
I = p 3 (1641 16,
(i,9)€S
L o= Mo Y (sl = 1w,
(4,9)€Te
I = M\ Z ’%] Vi)
(i,5)€T

It is sufficient to show that the difference is positive asymptotically with
probability tending to 1. Let y; = I'x; + wy, for ¢ = 1,--- ,n with w; ~
N(0,071). Denote W = (w1, ,w,) and X = (x1,--- ,X,)". Then

Cy — nyr, — FCQ/X + FCXF/

= = Z —I'xy)(y; — I'x;)

n

1 /
- - Wiwi
n <
=1
= Sw,
and
1 n
Cyx —-TCx = =) (yi—TI'x)x;
N4
1 « ,
= - WiX;
n <
=1
1
= —W'X
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Next denote A as the vectorization of a matrix A = (a1,--- ,a,), that is
A = (d},--,al). Then I; can be simplified I} = K; + K2+ K3+ K4, where

K, = tr{[Sw—@il]AU},
Ky = —2tr{(1X'W)OAy},
n

. _
_ N U - AU
Ko = B84 aoa-ow) (57).
K, = tI‘{AchAQ/AU},
and
v _ | & oot ~(2W'X) ® I,
VT —(BX'W) ® 1, 2Cx ® 0, |’

©, = © +vAy and I, is a p, dimensional identity matrix. We can rewrite

v, as
v - (1= 0 0,'@e;! 0
v —(2X'WO,) ® O, I.q, 0 Q,

I —(20,W'X)®6,
X n
0 Iann ’

where Q, = 2Cx ® 0, — 5(X'WO,W'X) ® O,. Let

< n ) _ < Ip% _(%@vwlx)@)@v > < éU )
Y2 O Iann AV ’

SO
1 —1 -1
0, ®6 0 Y1
Ks= [ dv(1—v){(y}, 95 ( v v )( .
o= [ at— o o (")
Then
Ky > & min (0200912} + = min g0
3 - 9 0<v<1 max v)||Y1 9 0§’U§1y2 vY2
1 1
> - —2 : 2 - . /
®) > 20Ol 18012 i 2+ L i 402,

where ||0]| < 7%, | Ayl = o(1) and

. 2
y = Ay — [(HGUW,X) ® O,]Ay

_ 2 ~ 2
= Ap— [ﬁ(ewfx) ® O]Ay — [%(AUW’X) ® B]Ay

2v , - 202 , _
—[-(OWX)® Ay]Ay — [ - (AvW'X) ® Ay]Av.
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We then have

_ ) _
. > _ = ! .
min > A0 - |2 (OWX) © ©]|Av]|(L+ op(1))

From Lemma 4, we know ||[n"!OW'X]|| = op(1), together with ||©] <
L, we have ||2n" (OW'X) ® ©|| = op(1). From the designed framework,

1AV = O(\/ky 2800800y Ay || > min(Cy, Cp)y/ Ent2n)lo8Pn  From the

conditions in theorem, we know that ¢, /p, — y € (0,1) and ky, = O(Sp+pn)-
Combining together, we have ||Ay || = O(||Ay]|). So there exists a constant
ci > 0, such that

() min 1] > e Au] = fy/CPa3 + €362

4
Q, = 2Cx®0, - —[X'WO,WX] 0,
n

4
= 2Cx ®0 +20Cx ® Ay — = [X'WOW'X] ® ©

U XWAWX] 6 — ) [X'WOW'X] ® Ay

402

5 [X'WAW'X] ® Ap.

So
Q2 = 2y5(Cx @ O)y2 + 2vy5(Cx @ Ap) e
4 4o
—ﬁyé{ X'WOW'X] & @}yz - ﬁyé{ X'WAW'X] © 0}y
L, 4o

—h{ (XWOW'X] © Au fy2 — 5 { [X'WACW'X] & Ay .

We know ||Cx ® Ay|| = o(1). From Lemma 4, we have ||[n 2X'WOW'X|| =
op(1). Similarly, the lo norms of the other three matrices are op(1). Hence,

(5) Y5 Qy2 = 2y5(Cx ® ©)y2 + op([|y=?).

According to the support T of I", we can decompose y as yp = ((yg)/T, (yg)/Tc)/
and decompose the matrix Cx ® © correspondingly. Then

Y2(Cx ® ©)y2 = (y2)7(Cx ® O)r,7(y2)1 + (¥2)7¢(Cx ® O)7e 10 (Y2) T

+2(y2)7e (Cx ® O) e 1(y2) 7.
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From Cauchy-Schwarz inequality,

[(52)e(Cx @ O)re ()] < \/ (1) (Cx @ ©)rr(92)7 %

V (2)5(Cx © ©)1e1 [(Cx ® ©)1r] " (Cx ® O)ryre () e
By condition (A), (B) and (D), we have
(y2)77e (Cx ® ©)re r(y2)r] < \/CoMury M| (y2) eIl (y2) 7 |l

But from the design of A, |(y2)re|| = o(||(y2)7|l), hence |(y2)7(Cx ®
O)rer(y2)r| = o(||(y2)7||?). Then we have

¥5(Cx © O)yz = Auin ((Cx © O)r )| W) |12 + 0 ()1,

By condition (C) we know there exists a constant k; > 0, such that

(6) ¥5(Cx @ O)ys > k|| (y2)7||* = k1C3~2.

From (5), (6) we know there exists a constant ko > 0, such that

(7)

Combining (3), (4) and (7) we have

200 1n yQvaQ > ko C3v2.

r X
Ky > 5(71 L1 0(1)G2(CEaZ + C262) + kaCon2.

Using a similar technique as in Lam and Fan (2009), we have |Kj| <
My + M5, where

My o= 2 ) |( @WX ) (Av )il
(4,9)€T

My = 2 > | @WX )i (Av)ijl-
(3,5)€T°

Using Lemma 1, we have

My < 2y knmax|( GWX),JIII(AV)TII

0P<\/,€nlogpn+bg%)03%

n
= OP(C37721)7

IN
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which is dominated by K3 when Cj is sufficiently large.
We now consider

1
L=My > Y {Aall = 2(COW'X), (17}

(i,)eTe
log py, +log gy,
> 3 P Op(y )i,
(i,)eTe

from the assumption that (logp, +logg,)/n = O(\2), we have I, — My > 0.
We then consider I,

I, = M\ Z h’zj ‘71]

(4.4)ET
An Z Vi; — Vil
(3,7)€T

< )\n \/EC?) Tn-

A, = My 08Pn £ 10800
n

for some constant M, then I5 < TCgfny for some constant 7, which makes I5
to be dominated by K3 with sufficiently large Cs.
Finally, we bound Ky,

IN

If we choose

K, = tr{AchA/VAU} = (TV)/{CX Y AU}F\/
)\max((jX))\max(AU)HA7VH2

<
< Mo(1)(C3v2 + Cioz) = o(C5772),

which is dominated by K3. Using exactly the same argument as in Lam and
Fan (2009), one can show that |K;| < L; + Lo where L; is dominated by
Ks and Iy — Ly > 0, and |I3] is dominated by K3. This completes the proof
of the theorem. [J

6.3. Proof of Theorem 4. Let (01,T'1) be a maximizer of

(8) max logdet © — tr(Spr®) — A Z peni(yst) — p Z peng(Oyy).
tt
Define

41(01,T1) = — log det Oy +trSt, ©1+ Ay S Y51/ 131" + pu 3 10811/ 16ua ™,
ij k£l
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then the derivative for ¢1(©1,T1) with respect to vi, for (k,1) € T€ is
9q1(©1,1'1)
My

A
(9> + H/klyllnl Sgn(’}/lil )7

1
= 2(01(I" = T)Cx)y = 2O W' X)y

and the derivative for ¢;(©1,1'1) with respect to Hzlj for (i,7) € S¢is
0q1(01,1')
897;1]-

(10) H(T = D)Cx(T1 =Ty = oy + 5 sen(e).
j

(Sw)ij — ("1~ )XW — [(-W'X)(T) — 1Y)y

We show that under the conditions in the theorem, the sign of (9) depends
on sgn(v4;) only and the sign of (10) depends on sgn(@ilj) only both with
probability tending to 1. Then the optimum will be at 0 so that éij = 0 for
all (i,7) € S¢ and Ay, = 0 for all (k,l) € T° with probability tending to 1. It
can be shown that

[(©1(T1-T)Cx),,| < [(Cx®O)(T1 —T)[lo +[[(Cx®(01-0))(T1 — D)l

log Pn + log qn )
n

)

< Mi(ry )Ty = Tlle +o(|T1 = T|lr) = 0(\/kn
and from Lemma 1,

1 1 1
COW X < [ OWX|w + |- (01~ O)W'X o

1 1
= H*GW/XHOO + O(H*GW/XHOO)
n n

S O( }]'OgZ)TLjl_logq’n)7

o
1 log p,, + log qp,
2(61(1y ~ T)Cx),, — 20, WX )yl < 2\/kgpngq
A
<O0(el\,) < O(="),
=9l ) (\’Ykz!’“)
for (k,1) € T°. In other words, the sign of (9) is dominated by the sgn(v},).

From Lam and Fan (2009), max;; |(Sw)ij — 05| = Op({log pn/n}'/? + a,11/2)

and using Lemma 2 and Lemma 3, we have

1 1 1
max [T =) (- XW)li| = max [[(CWX) (1) ]ij| < T =Tl - X Wlloc

)



SUPPLEMENTAL MATERIALS 21
/1o +lo
S \/a gpn - g qn ,

max |[(T1 = T)Cx (T'1 = T)i;| < l1T1 = Dllloo[Cx (T1 = T)|oc

v

On the other hand,

and

[Cx(T1 —T)floc = [I(Ip, ® Cx)(T1 —T)|loo
< (I, ® Cx)(T1 = D)l

log p,, + log qp,
My|[Ty =T = oMkngpngq).

IN

So
(Swij = (T = D)X W)Ly — (W)L =Yy

+[(T; —T)Cx (T — F)]ij - Uilj|

< [(Sw)ij — oyl +2[[(T1 — F)(%X/W”ij‘ + (1 = D) Cx (I = D)l

lo +lo lo +lo
SOP(\/CTn+\/m+2\/a gpnn an+m\/kn gpnn an)

Pn
= O(fm2 n SO _ ,
() < O

for (i,7) € S°. So the sign of (10) is dominated by sgn(@ilj). This completes
the proof. (I
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