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1. Summary of the Supplemental Materials. This supplemental
material includes:

1. Tables of the standard errors of simulation results presented in Table
1 and Table 2.

2. Propositions on Hessian matrix and the convergence of the algorithm.
3. Asymptotic results when p and q are fixed when n → ∞.
4. Rates of convergence of the estimates and sparsistency as pn and qn

diverge.
5. Proofs of Lemmas and Theorems.

2. Tables of Standard Errors of Simulation Results.

1



2 YIN AND LI

T
a
b
l
e
1

C
o
m
pa
ri
so
n
o
f
th
e
pe
rf
o
rm

a
n
ce
s
o
f
th
e
cG

G
M
,
a
d
a
p
ti
ve

cG
G
M

(a
cG

G
M
),

gr
a
p
h
ic
a
l
L
a
ss
o
(g
la
ss
o
),

a
d
a
p
ti
ve

gr
a
p
h
ic
a
l
L
a
ss
o
(a
gl
a
ss
o
)

a
n
d
a
m
od
ifi
ed

n
ei
gh
bo
rh
oo
d
se
le
ct
io
n
p
ro
ce
d
u
re

u
si
n
g
m
u
lt
ip
le

L
a
ss
o
(m

L
a
ss
o
)
fo
r
M
od
el
s
1
-
3
w
h
en

p
<

n
ba
se
d
o
n
5
0
re
p
li
ca
ti
o
n
s.

F
o
r
ea
ch

m
ea
su
re
m
en

t,
st
a
n
d
a
rd

d
ev
ia
ti
o
n
is

gi
ve
n
ba
se
d
o
n
5
0
re
p
li
ca
ti
o
n
s.

E
st
im

a
ti
o
n
o
f
Θ

N
ei
g
h
b
o
r
S
el
ec
ti
o
n

M
et
h
o
d

L
O
S
S

∥∆
∥ ∞

∆
∞

∥∆
∥

∥∆
∥ F

D
IS
T

S
P
E

S
E
N

M
C
C

M
o
d
el

1
cG

G
M

0.
57

58
0
.0
2
5
3

0
.0
5
6
2

0
.0
1
6
4

0
.0
4
7
9

1
8
.0
3
9
8

0
.0
0
1
6

0
.0
3
7
1

0
.0
3
0
8

ac
G
G
M

0.
59

03
0
.0
2
1
6

0
.0
7
1
6

0
.0
1
9
2

0
.0
6
0
9

1
9
.5
0
7
4

0
.0
0
1
8

0
.0
3
3
3

0
.0
3
1
5

gl
a
ss
o

0.
24

57
0
.0
1
5
5

0
.0
5
2
3

0
.0
1
1
1

0
.0
3
5
8

2
4
.5
9
6
0

0
.0
0
2
5

0
.0
3
0
9

0
.0
2
6
9

a
gl
a
ss
o

0.
26

35
0
.0
1
8
2

0
.0
6
6
0

0
.0
1
3
4

0
.0
4
3
3

2
0
.0
1
0
7

0
.0
0
1
8

0
.0
3
2
7

0
.0
2
7
4

m
L
a
ss
o

-
-

-
-

-
1
5
.3
9
8
4

0
.0
0
1
3

0
.0
2
9
6

0
.0
2
8
9

M
o
d
el

2
cG

G
M

0.
40

46
0
.0
3
7
5

0
.0
9
0
6

0
.0
2
0
8

0
.0
6
2
5

1
3
.5
2
3
4

0
.0
0
5
1

0
.0
5
2
1

0
.0
4
2
0

ac
G
G
M

0.
45

94
0
.0
2
8
8

0
.0
8
3
5

0
.0
2
6
9

0
.0
7
8
4

1
0
.6
1
3
8

0
.0
0
3
2

0
.0
4
0
4

0
.0
3
7
6

gl
a
ss
o

0.
21

39
0
.0
1
1
1

0
.0
6
3
1

0
.0
0
8
9

0
.0
2
2
5

1
5
.7
7
3
1

0
.0
0
6
3

0
.0
4
5
6

0
.0
3
1
5

a
gl
a
ss
o

0.
24

63
0
.0
1
3
3

0
.0
7
4
4

0
.0
0
9
4

0
.0
3
6
0

1
4
.8
5
3
0

0
.0
0
6
3

0
.0
5
0
4

0
.0
3
1
7

m
L
a
ss
o

-
-

-
-

-
1
3
.1
9
6
2

0
.0
0
5
3

0
.0
3
3
1

0
.0
2
8
6

M
o
d
el

3
cG

G
M

0.
29

37
0
.0
3
4
3

0
.0
7
3
7

0
.0
3
0
9

0
.0
6
2
0

9
.2
1
5
9

0
.0
1
9
0

0
.0
6
8
1

0
.0
4
8
3

ac
G
G
M

0.
27

82
0
.0
3
4
7

0
.0
8
4
1

0
.0
3
5
7

0
.0
6
5
2

8
.4
3
4
0

0
.0
1
3
8

0
.0
6
2
7

0
.0
5
2
8

gl
a
ss
o

0.
13

35
0
.0
2
1
1

0
.0
5
4
3

0
.0
1
7
3

0
.0
2
7
4

1
3
.7
7
8
7

0
.0
2
5
3

0
.0
5
1
6

0
.0
4
2
3

a
gl
a
ss
o

0.
14

20
0
.0
2
2
2

0
.0
6
1
1

0
.0
1
8
3

0
.0
3
1
1

1
2
.8
9
8
7

0
.0
2
3
5

0
.0
5
5
9

0
.0
4
3
3

m
L
a
ss
o

-
-

-
-

-
8
.3
9
1
1

0
.0
1
4
7

0
.0
4
8
5

0
.0
4
0
1



SUPPLEMENTAL MATERIALS 3

T
a
b
l
e
2

C
o
m
pa
ri
so
n
o
f
th
e
pe
rf
o
rm

a
n
ce
s
o
f
th
e
cG

G
M
,
th
e
gr
a
p
h
ic
a
l
L
a
ss
o
(g
la
ss
o
)
a
n
d
a
m
od
ifi
ed

n
ei
gh
bo
r
se
le
ct
io
n
p
ro
ce
d
u
re

u
si
n
g
m
u
lt
ip
le

L
a
ss
o
(m

L
a
ss
o
)
fo
r
M
od
el

4
∼

M
od
el

6
w
h
en

p
>

n
ba
se
d
o
n
5
0
re
p
li
ca
ti
o
n
s.

F
o
r
ea
ch

m
ea
su
re
m
en

t,
st
a
n
d
a
rd

d
ev
ia
ti
o
n
is

gi
ve
n
ba
se
d
o
n

5
0
re
p
li
ca
ti
o
n
s.

E
st
im

a
ti
o
n
o
f
Θ

N
ei
g
h
b
o
r
S
el
ec
ti
o
n

M
et
h
o
d

L
O
S
S

∥∆
∥ ∞

∆
∞

∥∆
∥

∥∆
∥ F

D
IS
T

S
P
E

S
E
N

M
C
C

M
o
d
el

4
cG

G
M

2.
04

25
0
.0
3
6
8

0
.0
9
5
8

0
.0
3
9
8

0
.0
4
4
5

6
5
.4
0
8
0

1
e-
0
4

0
.0
0
9
8

0
.0
1
4
9

gl
a
ss
o

0.
66

35
0
.0
0
9
2

0
.0
8
0
3

0
.0
0
6
6

0
.0
2
3
7

1
6
8
.0
9
7
9

2
e-
0
4

0
.0
0
5
5

0
.0
0
2
1

m
L
a
ss
o

-
-

-
-

-
3
9
.5
7
4
8

4
e-
0
5

0
.0
0
5
0

0
.0
0
6
5

M
o
d
el

5
cG

G
M

1.
78

33
0
.0
4
3
7

0
.2
5
6
2

0
.0
5
7
0

0
.0
6
3
9

1
1
8
.0
6
3
1

2
e-
0
4

0
.0
0
9
3

0
.0
2
3
1

gl
a
ss
o

0.
62

39
0
.0
0
8
7

0
.0
6
8
9

0
.0
0
8
8

0
.0
3
1
2

1
8
3
.4
7
1
9

3
e-
0
4

0
.0
0
5
6

0
.0
0
2
0

m
L
a
ss
o

-
-

-
-

-
1
6
0
.3
1
0
8

3
e-
0
4

0
.0
0
9
4

0
.0
0
3
0

M
o
d
el

6
cG

G
M

0.
75

71
0
.0
4
3
6

0
.0
4
2
5

0
.0
2
6
8

0
.0
3
6
9

1
4
.2
7
8
9

4
e-
0
5

0
.0
0
6
3

0
.0
1
4
8

gl
a
ss
o

0.
41

39
0
.0
1
0
6

0
.0
9
0
1

0
.0
0
8

0
.0
2
8
5

7
7
.9
8
3
7

5
e-
0
4

0
.0
0
4
3

0
.0
0
2
3

m
L
a
ss
o

-
-

-
-

-
3
5
.9
7
0
7

2
e-
0
4

0
.0
0
6
3

0
.0
0
8
2



4 YIN AND LI

3. Propositions on Hessian Matrix and Convergence of the Al-
gorithm. We first study the log-likelihood function without the penalty
term as a function of the matrix parameter Ξ = (Θ,Γ). Denote

l(Ξ) = −loglik = − log detΘ+ tr
[
CY Θ−CY XΓ′Θ− ΓC′

Y XΘ+ΓCXΓ′Θ
]
.

Proposition 1. The Hessian matrix of the negative log-likelihood func-
tion l(Ξ) is

Hl(Ξ) =

(
Θ−1 ⊗Θ−1 −2CY X ⊗ Ip + 2(ΓCX)⊗ Ip

−2C′
Y X ⊗ Ip + 2(CXΓ′)⊗ Ip 2CX ⊗Θ

)
.

In addition, l(Ξ) is a bi-convex function of Γ and Θ. In words, this means
that for any fixed Θ, l(Ξ) is a convex function of Γ, and for any Γ, l(Ξ) is
a convex function of Θ.

Proof: It is easy to check that the first and the second derivatives of l(Ξ)
are

dl = − 1

detΘ
detΘtr(Θ−1dΘ) + tr(CY dΘ)− 2tr(C′

Y XΘdΓ)

−2tr(CY XΓ′dΘ) + 2tr(CXΓ′ΘdΓ) + tr(ΓCXΓ′dΘ)

= −tr(Θ−1dΘ) + tr(CY dΘ)− 2tr(C′
Y XΘdΓ)− 2tr(CY XΓ′dΘ)

+2tr(CXΓ′ΘdΓ) + tr(ΓCXΓ′dΘ),

and

d2l = tr(Θ−1dΘΘ−1dΘ)− 4tr(C′
Y XdΘdΓ) + 2tr(CXdΓ′ΘdΓ)(1)

+3tr(CXΓ′dΘdΓ) + tr(ΓCXdΓ′dΘ).

Denote

vec(Ξ) =

(
vec(Θ)
vec(Γ)

)
,

based on the fact that trABCD = (vec B′)′(A′ ⊗ C)vecD, we have

tr(Θ−1dΘΘ−1dΘ) = (dvecΘ)′(Θ−1 ⊗Θ−1)dvecΘ,

tr(C′
Y XdΘdΓ) = (dvecΘ)′(CY X ⊗ Ip)dvecΓ,

tr(CXdΓ′ΘdΓ) = (dvecΓ)′(CX ⊗Θ)dvecΓ

tr(CXΓ′dΘdΓ) = (dvecΘ)′(ΓCX ⊗ Ip)dvecΓ,

tr(ΓCXdΓ′dΘ) = (dvecΓ)′(CXΓ′ ⊗ Ip)dvecΘ.
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From the last two equalities, we have tr(CXΓ′dΘdΓ) = tr(ΓCXdΓ′dΘ).
Substituting these equations into (1), we obtain

d2l = (dvecΘ)′(Θ−1 ⊗Θ−1)dvecΘ− 4(dvecΘ)′(CY X ⊗ Ip)dvecΓ

+2(dvecΓ)′(CX ⊗Θ)dvecΓ + 4(dvecΘ)′(ΓCX ⊗ Ip)dvecΓ

= (dvecΘ)′(Θ−1 ⊗Θ−1)dvecΘ− 2(dvecΘ)′(CY X ⊗ Ip)dvecΓ

+2(dvecΘ)′(ΓCX ⊗ Ip)dvecΓ− 2(dvecΓ)′(C′
Y X ⊗ Ip)dvecΘ

+2(dvecΓ)′(CXΓ′ ⊗Θ)dvecΘ+ 2(dvecΓ)′(CX ⊗Θ)dvecΓ

= ((dvecΘ)′, (dvecΓ)′)

(
Θ−1 ⊗Θ−1 −2CY X ⊗ Ip + 2(ΓCX)⊗ Ip

−2C′
Y X ⊗ Ip + 2(CXΓ′)⊗ Ip 2CX ⊗Θ

)
×
(

dvecΘ
dvecΓ

)
= (dvecΞ)′

(
Θ−1 ⊗Θ−1 −2CY X ⊗ Ip + 2(ΓCX)⊗ Ip

−2C′
Y X ⊗ Ip + 2(CXΓ′)⊗ Ip 2CX ⊗Θ

)
dvecΞ,

from which the result follows.
The proof of bi-convexity is straight-forward. �

Proposition 2. The coordinate descent algorithm minimizing pl(Ξ) with
respective to Γ and Θ converges to a stationary point of pl(Ξ).

Proof: Notice that the pl(Ξ) is differentiable and continuous in Ξ. Then,
since pl(Ξ) is convex in Γ with Θ fixed and in Θ with Γ fixed, minimiza-
tion with respect to each gradient gives a unique coordinate-wise minimum.
Thus, we have satisfied the conditions of Tseng (2001), Theorem 4.1 (c),
and block coordinate-wise minimization converges to a stationary point of
pl(Ξ). �

4. Asymptotic Results When p and q Are Fixed. We derive the
asymptotic properties of the proposed estimators that are analogous to those
for the Lasso (Knight and Fu, 2000) and to those for the Gaussian graphical
model (Yuan and Lin, 2007; Fan, Feng and Wu, 2009). Also, we assume
that p and q are held fixed as the sample size n → ∞. We assume the
design matrix CX = 1/n

∑n
i=1 xix

′
i is well behaved and meets the regularity

conditions as in Knight and Fu (2000). Specifically, we assume x̄ exists and
is finite.
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Theorem 1. If
√
nρ → ρ0 ≥ 0,

√
nλ → λ0 ≥ 0 as n → ∞, the Lasso-

penalized estimator for the cGGM is such that

√
n
{
(Θ̂, Γ̂)− (Θ,Γ)

}
−→ argminU=U ′,V {ϕ(U, V )}

in distribution, where

ϕ(U, V ) = tr(UΣUΣ) + tr(ΘVCXV ′) + tr{U(A−BΓ′ − ΓB′)}
−tr{Θ(V B′ +BV ′)}
+ρ0

∑
i,j

{uijsgn(θij)I(θij ̸= 0) + |uij |I(θij = 0)}

+λ0

∑
i,j

{vijsgn(γij)I(γij ̸= 0) + |vij |I(γij = 0)},

in which A is a random symmetric p×p matrix such that vec(A) ∼ N (0,ΛQ)
and ΛQ is such that

cov(aij , ai′,j′) = cov(yiyj ,yi′yj′ |X);

and B is a random p × q matrix such that vec(B) ∼ N (0,ΛP ) and ΛP is
such that

cov(bij , bi′,j′) = Σi,i′(CX)j,j′ .

Furthermore,
cov(aij , bi′,j′) = cov(yiyj ,yi′ |X)x̄j′ .

Proof: Define

ϕn(U, V ) = − log det(Θ +
U√
n
)

+ tr
{
(Θ +

U√
n
)
[
CY −CY X(Γ +

V√
n
)′ − (Γ +

V√
n
)C′

Y X

+ (Γ +
V√
n
)CX(Γ +

V√
n
)′
]}

+ ρ
∑
i,j

|θij +
uij√
n
|+ λ

∑
i,j

|γij +
vij√
n
|

+ log det(Θ)− tr
{
Θ
[
CY −CY XΓ′ − ΓC′

Y X + ΓCXΓ′]}
− ρ

∑
i,j

|θij | − λ
∑
i,j

|γij |.
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Using the same argument as in Yuan and Lin (2007), one can show that

log det(Θ +
U√
n
)− log det(Θ) =

1√
n
tr(UΣ)− 1

n
tr(UΣUΣ) + o(

1

n
).

On the other hand,

tr
{
(Θ +

U√
n
)[CY −CY X(Γ +

V√
n
)′ − (Γ +

V√
n
)C′

Y X

+(Γ +
V√
n
)CX(Γ +

V√
n
)′]
}
− tr

{
Θ(CY −CY XΓ′ − ΓC′

Y X + ΓCXΓ′)
}

=
1√
n
tr
{
Θ[VCXΓ′ − VC′

Y X + ΓCXV ′ −CY XV ′]
}

(2)

+
1√
n
tr
{
U [CY −CY XΓ′ − ΓC′

Y X + ΓCXΓ′]
}

+
1

n
tr
{
ΘVCXV ′}+ 1

n
tr
{
U [VCXΓ′ − VC′

Y X + ΓCXV ′ −CY XV ′]
}
.

+
1

n
√
n
tr
{
UVCXV ′}

Denote Pn = CY X − ΓCX , then Bn =
√
nPn → B, where B ∼ N (0,ΛP )

with cov(bij , bi′j′) = Σi,i′(CX)j,j′ . Similarly, denote Qn = CY −(Σ+ΓCXΓ′),
then An =

√
nQn → A, where A ∼ N (0,ΛQ) with

cov(aij , ai′j′) = cov(Y (i)Y (j), Y (i′)Y (j′)|X).

It is easy to check that cov(aij , bi′j′) = cov(Y (i)Y (j), Y (i′)|X)xj′ . Then (2)
can be rewritten as

(2) = − 1√
n
tr
{
Θ(V P ′

n + PnV
′)
}
+

1√
n
trUΣ

+
1√
n
tr
{
U [Qn − PnΓ

′ − ΓP ′
n]
}

+
1

n
tr
{
ΘVCXV ′}− 1

n
tr
{
U [V P ′

n + PnV
′]
}

+
1

n
√
n
tr
{
UVCXV ′}.

In addition, we have

ρ
∑
ij

(
|θij +

uij√
n
| − |θij |

)
=

ρ√
n

∑
ij

{
uijsgn(θij)I(θij ̸= 0)

+|uij |I(θij = 0)
}
,
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λ
∑
ij

(|γij +
vij√
n
| − |γij |) =

λ√
n

∑
ij

{
vijsgn(γij)I(γij ̸= 0)

+|vij |I(γij = 0)
}
.

So nϕn(U, V ) can be rewritten as

nϕn(U, V ) = tr{UΣUΣ}+ tr{ΘVCXV ′}+ tr
{
U [An −BnΓ

′ − ΓB′
n]
}

−tr
{
Θ[V B′

n +BnV
′]
}

+
√
nρ
∑
ij

{
uijsgn(θij)I(θij ̸= 0) + |uij |I(θij = 0)

}
+
√
nλ
∑
ij

{
vijsgn(γij)I(γij ̸= 0) + |vij |I(γij = 0)

}
+ o(1),

where An =
√
nQn =

√
n(CY − Σ − ΓCXΓ′), Bn =

√
nPn =

√
n(CY X −

ΓCX) and An → N (0,ΛQ), Bn → N (0,ΛP ) as defined before. Therefore,
nϕn(U, V ) → ϕ(U, V ) in distribution. Since both ϕ(U, V ) and nϕn(U, V ) are
convex and ϕ(U, V ) has a unique minimum, it follows that

argmin nϕn(U, V ) =
√
n(Θ̂−Θ, Γ̂− Γ) → argmin ϕ(U, V ).

�

The next theorem shows that when the adaptive Lasso penalty function is
used for the means and also the concentration matrix and when the tuning
parameters are chosen appropriately, the resulting estimates are consistent
and have the oracle properties in the sense of Fan and Li (2001).

Theorem 2. Let (Θ̂, Γ̂) be the maximizer of (8) with initial consistent
estimator (Θ̃, Γ̃) and adaptive penalty pen(x) = |x|/|x̃|γ for some γ > 0. If
n(1+γ)/2ρ → ∞, n(1+γ)/2λ → ∞,

√
nρ → 0 and

√
nλ → 0 as n → ∞, then

Pr(θ̂ij = 0) → 1 if θij = 0, Pr(γ̂ij = 0) → 1 if γij = 0 and other elements
of Θ̂ and Γ̂ have the same limiting distribution as the maximum likelihood
estimate based on the true means and the true graphical structure.
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Proof: We define ϕn(U, V ) as

ϕn(U, V ) = − log det(Θ +
U√
n
) + tr

{
(Θ +

U√
n
)
[
CY −CY X(Γ +

V√
n
)′

−(Γ +
V√
n
)C′

Y X + (Γ +
V√
n
)CX(Γ +

V√
n
)′
]}

+ ρ
∑
ij

1

|θ̃ij |γ
|θij +

uij√
n
|

+λ
∑
ij

1

|Γ̃ij |γ
|γij +

vij√
n
|+ log det(Θ)

−tr
{
Θ
[
CY −CY XΓ′ − ΓC′

Y X + ΓCXΓ′]}
−ρ
∑
ij

|θij |
|θ̃ij |γ

− λ
∑
ij

|γij |
|Γ̃ij |γ

.

Similar to proof of Theorem 1, we have

nϕn(U, V ) = tr{UΣUΣ}+ tr{ΘVCXV ′}+ tr{U(An −BnΓ
′ − ΓB′

n)}

−tr{Θ(V B′
n +BnV

′)}+ nρ
∑
ij

1

|θ̃ij |γ
[
|θij +

uij√
n
| − |θij |

]
+nλ

∑
ij

1

|Γ̃ij |γ
[
|γij +

vij√
n
| − |γij |

]
+ o(1).

Note that θ̃ij = Op(n
−1/2) if θij = 0, Γ̃ij = Op(n

−1/2) if γij = 0, θ̃ij → θij
in probability, Γ̃ij → γij in probability,

√
nρ → 0 and

√
nλ → 0.

Therefore, if θij ̸= 0,

√
n
(
|θij +

uij√
n
| − |θij |

)
→ uijsgn(θij),

then by Slutsky’s theorem we have
√
nρ|θ̃ij |−γ√n(|θij+uij/

√
n|−|θij |) → 0.

If θij = 0,
√
n(|θij +

uij√
n
| − |θij |) = |uij |,

and
√
nρ|θ̃ij |−γ =

√
nρnγ/2(

√
n|θ̃ij |)−γ , where

√
n|θ̃ij | = Op(1). By the Slut-

sky’s theorem, we have
√
nρ|θ̃ij |−γ√n(|θij + uij/

√
n| − |θij |) → ∞. Similar

results hold for the corresponding term of γij . By the Slutsky’s theorem, we
have that nϕn(U, V ) →d ϕ(U, V ) for every (U, V ), where

ϕ(U, V ) = trUΣUΣ+trΘVCXV ′+tr{U(A−BΓ′−ΓB′)}−tr{Θ(V B′+BV ′)}

if U = U ′ such that uij = 0 if θij = 0, and vij = 0, if γij =
0, and ϕ(U, V ) = ∞, otherwise. Since ϕ is convex, the minimizer of ϕ satisfies
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uij = 0 if θij = 0, vij = 0 if γij = 0. The proof is now completed if we note
that the maximum likelihood estimator (Θ̂, Γ̂) for the true graph and true
mean model (V,E = (θij ̸= 0)),Γ = (γij ̸= 0) is such that

√
n
(
(Θ̂true, Γ̂true)− (Θ,Γ)

)
−→ argmin

{
tr{UΣUΣ}+ tr{ΘVCXV ′}

+tr
{
U(A−BΓ′ − ΓB′)

}
− tr

{
Θ(V B′ +BV ′)

}}
in distribution, where the minimum is taken over all symmetric matrices U
such that uij = 0 if θij = 0 and p×q matrices V such that vij = 0 if γij = 0.
�

5. Main Theoretical Results and Assumptions when pn and qn
Diverge. We denote the support of the true concentration matrix Σ−1

0 =
Θ0 = (θij) as S = {(i, j) : i ̸= j, θij ̸= 0} and the support of the true
regression coefficient matrix Γ0 = (γij) as T = {(i, j) : γij ̸= 0}. Let sn = |S|
and kn = |T | be the cardinality of these two supports. Denote λmin(A)
and λmax(A) as the minimum and maximum eigenvalues of a matrix A.
Define ∥A∥F =

√
tr(ATA) as the Frobenius norm of a matrix A. In order to

establish the asymptotic properties of the estimates, we assume the following
regularity conditions: for all n,

(A) There exist constants τ1 and τ2 such that

0 < τ1 < λmin(Σ0) ≤ λmax(Σ0) < τ2 < ∞;

(B) There exists a constant M1 such that for all n

λmax(CX) ≤ M1;

(C) There exists a constant ξ1 such that for all n

0 < ξ1 < λmin{(CX ⊗Θ0)T,T };

(D) There exists a constant C0 > 0, such that for all n,

λmax

(
(CX ⊗Θ0)T c,T

{
(CX ⊗Θ0)T,T

}−1
(CX ⊗Θ0)T,T c

)
≤ C0.

Condition (A) is the same as the condition (A) in Lam and Fan (2009),
which bounds uniformly the eigenvalues of Σ0. Condition (B) guarantees
that the design matrix X is appropriately behaved. Since we essentially treat
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the Γ matrix as a vector, condition (C) is similar to the conditions (26b)
and (26c) of Wainwright (2009). Condition (D) imposes a requirement on
the partition of the Hessian matrix corresponding to Γ between the relevant
and irrelevant covariates.

The following theorem establishes the rate of convergence of the penalized
likelihood estimates Θ̂ and Γ̂ in Frobenius norm.

Theorem 3. (Rate of convergence) Assume qn/pn → c∗ < 1. Under
the regularity conditions (A)-(D), if log pn/n = O(ρ2n), (log pn+log qn)/n =
O(λ2

n), (pn + sn)(log pn)
k/n = O(1), kn(log pn + log qn)

l/n = O(1) for some
k > 1 and l > 1, and kn = O(sn+ pn) , there exists a local minimizer (Θ̂, Γ̂)
of (8) with the Lasso penalty such that ∥Θ̂−Θ∥2F = OP {(pn + sn) log pn/n}
and ∥Γ̂− Γ∥2F = OP {kn(log pn + log qn)/n}.

Note that the asymptotic bias for Θ̂ is at the same rate as Lam and Fan
(2009) for sparseGGMs, which is (pn+sn)/nmultiplied by a logarithm factor
log pn, and goes to zero as long as (pn + sn)/n is at a rate of O{(log pn)−k}
with some k > 1. The total square errors for Γ̂ are at least of rate kn/n
since each of the kn nonzero elements can be estimated with rate n−1/2. The
price we pay for high-dimensionality is a logarithmic factor log(pnqn). The
estimate Γ̂ is consistent as long as kn/n is at a rate of O{(log pn+log qn)

−l}
with some l > 1. Here, we refer to the local minimizer as an interior point
within a given closed set such that it minimizes the target function. If the
Hessian matrix Hl(Ξ) is positive definite, the local minimizer becomes the
global minimizer.

To establish the sparsistency of the penalized estimators, we denote ∥A∥ =
max{||Ax||/||x||, x ∈ Rp, x ̸= 0} as the operator norm of a matrix A, ∥A∥∞
as the element-wise l∞ norm of a matrixA, and A ∞ = max1≤i≤p

∑q
j=1 |aij |

for A = (aij)p×q as the matrix l∞ norm of a matrix A. By sparsistency, we
mean the property that all parameters that are zero are actually estimated
as zero with probability tending to one (Lam and Fan, 2009). We have the
following theorem on sparsistency of our penalized estimates of Γ and Θ
when the adaptive Lasso penalty functions are used.

Theorem 4. (Sparsistency) Under the conditions given in Theorem 3,
and adaptive Lasso penalty pen1(γij) = |γij |/|γ̃ij |η1, pen2(θkl) = |θkl|/|θ̃kl|η2,
for some η1 > 0, η2 > 0, where Γ̃ = (γ̃ij) and Θ̃ = (θ̃kl) are any two en- and
fn-consistent estimator, i.e., en∥Γ̃− Γ∥∞ = OP (1), fn∥Θ̃−Θ∥∞ = OP (1).
For any local maximizer of (8) (Θ̂, Γ̂) satisfying ∥Θ̂ − Θ∥2F = OP {(pn +

sn) log pn/n}, ∥Θ̂ − Θ∥2 = OP (an), ∥Γ̂ − Γ∥2F = OP {kn(log pn + log qn)/n}
and Γ̂−Γ 2

∞ = OP (cn) for sequences an → 0 and cn → 0, if e−2η1
n kn(log pn+
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log qn)/n = O(λ2
n) and f−2η2

n {log pn/n + an + 2cnkn(log pn + log qn)/n} =
O(ρ2n), then with probability tending to 1, θ̂ij = 0 for all (i, j) ∈ Sc and
γ̂kl = 0 for all (k, l) ∈ T c.

Note that to obtain the sparsistency results of the estimates, we require
a certain rate of convergence for Θ̂ in both Frobenius and spectral norms
and a certain rate for Γ̂ in both Frobenius and matrix l∞ norms. The lower
bound for the tuning parameter λn for Γ̂’s is related to en, η1 and kn, while
the lower bound for tuning parameter ρn for Θ̂’s is related to not only fn,
η2 and an, but also cn and kn. This reflects the fact that the sparsistency
result on the concentration matrix can be affected by the estimates of the
regression parameters.

6. Proofs of The Theorems.

6.1. Proof of Lemmas.

Lemma 1. Under regularity conditions (A) and (B), let W, X be defined
as in the main text. Then

max
1≤i≤pn,1≤j≤qn

|( 1
n
ΘW′X)ij | = OP

(√
log pn + log qn

n

)
.

Proof: It is easy to check that W′ ∼ N(0, In ⊗ Θ−1). This together with
the fact that n−1ΘW′X = n−1(X′ ⊗Θ)W′ leads to

n−1ΘW′X ∼ N
(
0, n−2(X′ ⊗Θ)(In ⊗Θ−1)(X⊗Θ)

)
,

which implies that

y := n−1ΘW′X ∼ N
(
0, n−1CX ⊗Θ

)
.

Since the regularity conditions (A) and (B) are assumed to be held, applying
the Chernoff bound, there exist constants C1 and C2 such that P (|yi| > v) <
C1 exp{−C2nv

2} for all i = 1, · · · , pnqn. Then P (max1≤i≤pnqn |yi| > v) <
pnqnC1 exp{−C2nv

2}. We choose

v =

√
log pn + log qn

C2n
M,

for arbitrary M, then

P ( max
1≤i≤pnqn

|yi| >
√

log pn + log qn
C2n

M) <
C1

(pnqn)M−1
,
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which implies

max
1≤i≤pn,1≤j≤qn

|( 1
n
ΘW′X)ij | = OP (

√
log pn + log qn

n
).

�

Lemma 2. Under regularity condition (B), let W, X be defined as in
the main text. Then

max
1≤i≤pn,1≤j≤qn

|( 1
n
W′X)ij | = OP

(√
log pn + log qn

n

)

Proof: This lemma can be proved using the same argument as the proof of
Lemma 1. �

Lemma 3. Let ∥ · ∥∞ and · ∞ be the element-wise and matrix l∞
norm of a matrix, then for two matrices A and B, we have

∥AB∥∞ ≤ A ∞∥B∥∞.

Proof: Observe that |(AB)ij | = |a′ibj | ≤ ∥B∥∞∥ai∥1, where ai is the i-th
row of A while bj is the j-th column of B. �

Lemma 4. Suppose W is an n × pn data matrix, with each row of W
being independent identically distributed multivariate normal N(0,Θ−1). As-
sume ∥Θ∥2 ≤ τ−1

1 for some constant τ1 > 0. X is an n× qn constant matrix
with a bounded l2 norm in the sense that there exists a constant C1 > 0,
such that ∥n−1X′X∥2 ≤ C1. Assume pn/n = o(1) and there exists the limit
qn/pn → y, where y ∈ (0, 1). Then

∥ 1

n2
X′WΘW′X∥2 = oP (1),

and

∥ 1
n
ΘW′X∥2 = oP (1).

Proof: Since ΘΘ−1Θ = Θ, trΘΘ−1 = pn, then by Exercise 3.4.10 in Mar-
dia et al. (1979), WΘW′ ∼ Wn(In, pn), where Wn(In, pn) denotes for the
Wishart distribution. Then n−1X′WΘW′X ∼ Wqn(n

−1X′X, pn). Then the
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distribution of (npn)
−1X′WΘW′X is the same as a sample covariance ma-

trix of pn observations from the qn × 1 multivariate normal distribution
Nqn(0, n

−1X′X). Since ∥n−1X′X∥2 ≤ C1, using the same argument as in
the proof of Lemma 3 in Lam and Fan (2009) and Theorem 5.10 in Bai and
Silverstein (2006), with the condition qn/pn → y, where y ∈ (0, 1), we have∥∥∥ 1

npn
X′WΘW′X− 1

n
X′X

∥∥∥
2
= OP (1)

so ∥(npn)−1X′WΘW′X∥2 ≤ C1 + OP (1) = OP (1). Since pn/n = o(1),
then

∥∥n−2X′WΘW′X
∥∥
2
= pn/n

∥∥(npn)−1X′WΘW′X
∥∥
2
= oP (1). For the

second part, since ∥∥∥ 1
n
ΘW′X

∥∥∥
2
=
∥∥∥Θ1/2

( 1
n
Θ1/2W′X

)∥∥∥
2

≤
∥∥Θ1/2

∥∥
2

∥∥ 1
n
Θ1/2W′X

∥∥
2

≤ τ
−1/2
1

√
∥ 1

n2
X′WΘW′X∥2 = oP (1).

Thus we proved the lemma. �
Note that when the conditions in Theorem 3 are satisfied, then the conditions
in Lemma 4 are satisfied and can be applied.

6.2. Proof of Theorem 3. Similar to Lam and Fan (2009), let U be a
symmetric matrix of size pn, DU be its diagonal matrix and RU = U −DU

be its off-diagonal matrix. Let S be the support of Θ’s off-diagonal entries
(Θ)i̸=j and sn = |S| be its cardinality. Let V be a p-by-q matrix and T be
the support of the matrix Γ as defined before and T c be its complement
T c = {(i, j) : 1 ≤ i ≤ p, 1 ≤ j ≤ q} \T . Let kn = |T | be the cardinality of T .
Set ∆U = αnRU + βnDU , ∆V = γnVT + δnVT c . We will show that, for

αn =

√
sn

log(pn)

n
, βn =

√
pn

log(pn)

n
, γn =

√
kn

log(pn) + log(qn)

n
,

and δn = o(γn), and for a set A defined as

A = {(U, V ) : ∥∆U∥2F = C2
1α

2
n+C2

2β
2
n, ∥(∆V )T ∥2F = C2

3γ
2
n, ∥(∆V )T c∥2F = C2

4δ
2
n},

P
(

inf
(U,V )∈A

q(Θ +∆U ,Γ +∆V ) > q(Θ,Γ)
)
→ 1,

for sufficiently large constants C1, C2, C3 and C4. This implies that there is a
local minimizer in {(Θ+∆U ,Γ+∆V ) : ∥∆U∥2F ≤ C2

1α
2
n+C2

2β
2
n, ∥(∆V )T ∥2F =
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C2
3γ

2
n, ∥(∆V )T c∥2F = C2

4δ
2
n} such that ∥Θ̂−Θ∥F = OP (αn+βn), ∥Γ̂−Γ∥F =

OP (γn) for sufficiently large n.
In the following argument, let Sc = {(i, j) : i ̸= j} \ S. Consider Θ1 =

Θ+∆U , Γ1 = Γ +∆V , the difference

q(Θ1,Γ1)− q(Θ,Γ) = I1 + I2 + I3 + I4 + I5,

where

I1 = tr{(CY −CY XΓ′
1 − Γ1C

′
Y X + Γ1CXΓ′

1)Θ1}
−tr{(CY −CY XΓ′ − ΓC′

Y X + ΓCXΓ′)Θ}
− log det(Θ1) + log det(Θ),

I2 = ρn
∑

(i,j)∈Sc

(|θ1ij | − |θij |),

I3 = ρn
∑

(i,j)∈S

(|θ1ij | − |θij |),

I4 = λn

∑
(i,j)∈T c

(|γ1ij | − |γij |),

I5 = λn

∑
(i,j)∈T

(|γ1ij | − |γij |).

It is sufficient to show that the difference is positive asymptotically with
probability tending to 1. Let yi = Γxi + wi, for i = 1, · · · , n with wi ∼
N(0,Θ−1). Denote W = (w1, · · · ,wn)

′ and X = (x1, · · · ,xn)
′. Then

CY −CY XΓ′ − ΓC′
Y X + ΓCXΓ′

=
1

n

n∑
i=1

(yi − Γxi)(yi − Γxi)
′

=
1

n

n∑
i=1

wiw
′
i

:= SW ,

and

CY X − ΓCX =
1

n

n∑
i=1

(yi − Γxi)x
′
i

=
1

n

n∑
i=1

wix
′
i

=
1

n
W′X.
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Next denote Ā as the vectorization of a matrix A = (a1, · · · , an), that is
Ā = (a′1, · · · , a′n)′. Then I1 can be simplified I1 = K1+K2+K3+K4, where

K1 = tr{[SW −Θ−1]∆U},

K2 = −2tr{( 1
n
X′W)Θ∆V },

K3 = [∆̄′
U , ∆̄

′
V ]{
∫ 1

0
dv(1− v)Ψv}

(
∆̄U

∆̄V

)
,

K4 = tr{∆V CX∆′
V ∆U},

and

Ψv =

[
Θ−1

v ⊗Θ−1
v −( 2nW

′X)⊗ Ipn
−( 2nX

′W)⊗ Ipn 2CX ⊗Θv

]
,

Θv = Θ+ v∆U and Ipn is a pn dimensional identity matrix. We can rewrite
Ψv as

Ψv =

(
Ip2n 0

−( 2nX
′WΘv)⊗Θv Ipnqn

)(
Θ−1

v ⊗Θ−1
v 0

0 Ωv

)
×
(

Ip2n −( 2nΘvW
′X)⊗Θv

0 Ipnqn

)
,

where Ωv = 2CX ⊗Θv − 4
n2 (X

′WΘvW
′X)⊗Θv. Let(

y1
y2

)
=

(
Ip2n −( 2nΘvW

′X)⊗Θv

0 Ipnqn

)(
∆̄U

∆̄V

)
,

so

K3 =

∫ 1

0
dv(1− v){(y′1, y′2)

(
Θ−1

v ⊗Θ−1
v 0

0 Ωv

)(
y1
y2

)
}.

Then

K3 ≥ 1

2
min
0≤v≤1

{λ−2
max(Θv)∥y1∥2}+

1

2
min
0≤v≤1

y′2Ωvy2

≥ 1

2
(∥Θ∥+ ∥∆U∥)−2 min

0≤v≤1
∥y1∥2 +

1

2
min
0≤v≤1

y′2Ωvy2,(3)

where ∥Θ∥ ≤ τ−1
1 , ∥∆U∥ = o(1) and

y1 = ∆̄U − [(
2

n
ΘvW

′X)⊗Θv]∆̄V

= ∆̄U − [
2

n
(ΘW′X)⊗Θ]∆̄V − [

2v

n
(∆UW

′X)⊗Θ]∆̄V

−[
2v

n
(ΘW′X)⊗∆U ]∆̄V − [

2v2

n
(∆UW

′X)⊗∆U ]∆̄V .
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We then have

min
0≤v≤1

∥y1∥ ≥ ∥∆̄U∥ − ∥ 2
n
(ΘW′X)⊗Θ∥∥∆̄V ∥

(
1 + oP (1)

)
.

From Lemma 4, we know ∥n−1ΘW′X∥ = oP (1), together with ∥Θ∥ ≤
τ−1
1 , we have ∥2n−1(ΘW′X) ⊗ Θ∥ = oP (1). From the designed framework,

∥∆̄V ∥ = O(
√

kn
log pn+log qn

n ), ∥∆̄U∥ ≥ min(C1, C2)

√
(sn+pn) log pn

n . From the

conditions in theorem, we know that qn/pn → y ∈ (0, 1) and kn = O(sn+pn).
Combining together, we have ∥∆̄V ∥ = O(∥∆̄U∥). So there exists a constant
c∗1 > 0, such that

(4) min
0≤v≤1

∥y1∥ ≥ c∗1∥∆̄U∥ = c∗1

√
C2
1α

2
n + C2

2β
2
n

Next,

Ωv = 2CX ⊗Θv −
4

n2

[
X′WΘvW

′X
]
⊗Θv

= 2CX ⊗Θ+ 2vCX ⊗∆U − 4

n2

[
X′WΘW′X

]
⊗Θ

−4v

n2

[
X′W∆UW

′X
]
⊗Θ− 4v

n2

[
X′WΘW′X

]
⊗∆U

−4v2

n2

[
X′W∆UW

′X
]
⊗∆U .

So

y′2Ωvy2 = 2y′2
(
CX ⊗Θ

)
y2 + 2vy′2

(
CX ⊗∆U

)
y2

− 4

n2
y′2

{[
X′WΘW′X

]
⊗Θ

}
y2 −

4v

n2
y′2

{[
X′W∆UW

′X
]
⊗Θ

}
y2

−4v

n2
y′2

{[
X′WΘW′X

]
⊗∆U

}
y2 −

4v2

n2
y′2

{[
X′W∆UW

′X
]
⊗∆U

}
y2.

We know ∥CX⊗∆U∥ = o(1). From Lemma 4, we have ∥n−2X′WΘW′X∥ =
oP (1). Similarly, the l2 norms of the other three matrices are oP (1). Hence,

(5) y′2Ωvy2 = 2y′2
(
CX ⊗Θ

)
y2 + oP (∥y2∥2).

According to the support T of Γ, we can decompose y2 as y2 =
(
(y2)

′
T , (y2)

′
T c

)′
and decompose the matrix CX ⊗Θ correspondingly. Then

y′2(CX ⊗Θ)y2 = (y2)
′
T (CX ⊗Θ)T,T (y2)T + (y2)

′
T c(CX ⊗Θ)T c,T c(y2)T c

+2(y2)
′
T c(CX ⊗Θ)T c,T (y2)T .
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From Cauchy-Schwarz inequality,

|(y2)′T c(CX ⊗Θ)T c,T (y2)T | ≤
√

(y2)′T (CX ⊗Θ)T,T (y2)T×√
(y2)′T c(CX ⊗Θ)T c,T

[
(CX ⊗Θ)T,T

]−1
(CX ⊗Θ)T,T c(y2)T c

By condition (A), (B) and (D), we have

|(y2)′T c(CX ⊗Θ)T c,T (y2)T | ≤
√

C0M1τ
−1
1 ∥(y2)T c∥∥(y2)T ∥.

But from the design of A, ∥(y2)T c∥ = o(∥(y2)T ∥), hence |(y2)′T c(CX ⊗
Θ)T c,T (y2)T | = o(∥(y2)T ∥2). Then we have

y′2(CX ⊗Θ)y2 ≥ λmin

(
(CX ⊗Θ)T,T

)
∥(y2)T ∥2 + oP (∥(y2)T ∥2).

By condition (C) we know there exists a constant k1 > 0, such that

(6) y′2(CX ⊗Θ)y2 ≥ k1∥(y2)T ∥2 = k1C
2
3γ

2
n.

From (5), (6) we know there exists a constant k2 > 0, such that

(7)
1

2
min
0≤v≤1

y′2Ωvy2 ≥ k2C
2
3γ

2
n.

Combining (3), (4) and (7) we have

K3 ≥
1

2
(τ−1

1 + o(1))c∗21 (C2
1α

2
n + C2

2β
2
n) + k2C

2
3γ

2
n.

Using a similar technique as in Lam and Fan (2009), we have |K2| ≤
M1 +M2, where

M1 = 2
∑

(i,j)∈T

|
( 1
n
ΘW′X

)
ij
(∆V )ij |,

M2 = 2
∑

(i,j)∈T c

|
( 1
n
ΘW′X

)
ij
(∆V )ij |.

Using Lemma 1, we have

M1 ≤ 2
√

knmax
i,j

|( 1
n
ΘW′X)i,j |∥(∆V )T ∥

≤ OP

(√
kn

log pn + log qn
n

)
C3γn

= OP (C3γ
2
n),
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which is dominated by K3 when C3 is sufficiently large.
We now consider

I4 −M2 ≥
∑

(i,j)∈T c

{λn|γ1ij | − |2
( 1
n
ΘW′X

)
ij
||γ1ij |}

≥
∑

(i,j)∈T c

[λn −OP

(√ log pn + log qn
n

)
]|γ1ij |,

from the assumption that (log pn+log qn)/n = O(λ2
n), we have I4−M2 ≥ 0.

We then consider I5,

I5 = λn

∑
(i,j)∈T

(|γ1ij | − |γij |)

≤ λn

∑
(i,j)∈T

|γ1ij − γij |

≤ λn

√
knC3γn.

If we choose

λn = M

√
log pn + log qn

n
,

for some constant M , then I5 ≤ τC3γ
2
n for some constant τ , which makes I5

to be dominated by K3 with sufficiently large C3.
Finally, we bound K4,

K4 = tr{∆V CX∆′
V ∆U} = (∆V )

′{CX ⊗∆U}∆V

≤ λmax(CX)λmax(∆U )∥∆V ∥2

≤ M1o(1)(C
2
3γ

2
n + C2

4δ
2
n) = o(C2

3γ
2
n),

which is dominated by K3. Using exactly the same argument as in Lam and
Fan (2009), one can show that |K1| ≤ L1 + L2 where L1 is dominated by
K3 and I2 −L2 ≥ 0, and |I3| is dominated by K3. This completes the proof
of the theorem. �

6.3. Proof of Theorem 4. Let (Θ1,Γ1) be a maximizer of

(8) max log detΘ− tr(SΓΘ)− λ
∑
s,t

pen1(γst)− ρ
∑
t,t′

pen2(θtt′).

Define

q1(Θ1,Γ1) = − log detΘ1+trSΓ1Θ1+λn

∑
ij

|γ1ij |/|γ̃ij |η1+ρn
∑
k ̸=l

|θ1kl|/|θ̃kl|η2 ,
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then the derivative for q1(Θ1,Γ1) with respect to γ1kl for (k, l) ∈ T c is

∂q1(Θ1,Γ1)

∂γ1kl
= 2

(
Θ1(Γ1 − Γ)CX

)
kl
− 2(

1

n
Θ1W

′X)kl

+
λn

|γ̃kl|η1
sgn(γ1kl),(9)

and the derivative for q1(Θ1,Γ1) with respect to θ1ij for (i, j) ∈ Sc is

∂q1(Θ1,Γ1)

∂θ1ij
= (SW)ij − [(Γ1 − Γ)(

1

n
X′W)]ij − [(

1

n
W′X)(Γ1 − Γ)′]ij

+[(Γ1 − Γ)CX(Γ1 − Γ)]ij − σ1
ij +

ρn

|θ̃ij |η2
sgn(θ1ij).(10)

We show that under the conditions in the theorem, the sign of (9) depends
on sgn(γ1kl) only and the sign of (10) depends on sgn(θ1ij) only both with

probability tending to 1. Then the optimum will be at 0 so that θ̂ij = 0 for
all (i, j) ∈ Sc and γ̂kl = 0 for all (k, l) ∈ T c with probability tending to 1. It
can be shown that

|
(
Θ1(Γ1−Γ)CX

)
kl
| ≤ ∥(CX⊗Θ)(Γ1 − Γ)∥∞+∥

(
CX⊗(Θ1−Θ)

)
(Γ1 − Γ)∥∞

≤ M1(τ
−1
1 )∥Γ1 − Γ∥F + o(∥Γ1 − Γ∥F ) = O

(√
kn

log pn + log qn
n

)
,

and from Lemma 1,

|( 1
n
Θ1W

′X)kl| ≤ ∥ 1
n
ΘW′X∥∞ + ∥ 1

n
(Θ1 −Θ)W′X∥∞

= ∥ 1
n
ΘW′X∥∞ + o(∥ 1

n
ΘW′X∥∞)

≤ O(

√
log pn + log qn

n
),

so

|2
(
Θ1(Γ1 − Γ)CX

)
kl
− 2(

1

n
Θ1W

′X)kl| ≤ 2

√
kn

log pn + log qn
n

≤ O(eη1n λn) ≤ O(
λn

|γ̃kl|η1
),

for (k, l) ∈ T c. In other words, the sign of (9) is dominated by the sgn(γ1kl).

From Lam and Fan (2009), maxij |(SW)ij −σ1
ij | = OP ({log pn/n}1/2+ a

1/2
n )

and using Lemma 2 and Lemma 3, we have

max
ij

|[(Γ1−Γ)(
1

n
X′W)]ij | = max

ij
|[( 1

n
W′X)(Γ1−Γ)′]ij | ≤ Γ1−Γ ∞∥ 1

n
X′W∥∞
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≤
√
cn

√
log pn + log qn

n
,

and

max
ij

|[(Γ1 − Γ)CX(Γ1 − Γ)′]ij | ≤ Γ1 − Γ ∞∥CX(Γ1 − Γ)′∥∞.

On the other hand,

∥CX(Γ1 − Γ)′∥∞ = ∥(Ipn ⊗CX)(Γ1 − Γ)∥∞
≤ ∥(Ipn ⊗CX)(Γ1 − Γ)∥

≤ M1∥Γ1 − Γ∥F = O(

√
kn

log pn + log qn
n

).

So

|(SW)ij − [(Γ1 − Γ)(
1

n
X′W)]ij − [(

1

n
W′X)(Γ1 − Γ)′]ij

+[(Γ1 − Γ)CX(Γ1 − Γ)]ij − σ1
ij |

≤ |(SW)ij − σ1
ij |+ 2|[(Γ1 − Γ)(

1

n
X′W)]ij |+ |(Γ1 − Γ)CX(Γ1 − Γ)]ij |

≤ OP (
√
an +

√
log pn/n+2

√
cn

√
log pn + log qn

n
+
√
cn

√
kn

log pn + log qn
n

)

= O(fη2
n ρn) ≤ O(

ρn

|θ̃ij |η2
),

for (i, j) ∈ Sc. So the sign of (10) is dominated by sgn(θ1ij). This completes
the proof. �
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