Supplemental Data

Strain	Genotype or description (species)	Source or reference						
E. coli	(species)							
DH10β	Cloning host	Knight Laboratory Collection						
BL21 (DE3)/pLysS	Expression host	Novagen						
Bacillus								
KMS3	gerA::spec gerB::cmΩpcm::tet gerK::erm; PS832 (B. subtilis)	This study						
ADL18	Wild type; PY79 (<i>B. subtilis</i>)	Driks Laboratory Collection						
ADL831	Wild type; 569 (<i>B. cereus</i>)	Driks Laboratory Collection						
RG1	Wild type; 34F2; pXO1 ⁺ pXO2 ⁻ (<i>B. anthracis</i> (Sterne))	P. Jackson						
ADL2260	<i>bclA::kan</i> (<i>B. anthracis</i> (Sterne))	J. Bozue						
MGM203	cotOΩpMGM3 (<i>B. anthracis</i> (Sterne))	(21)						
KMS2	<i>exsK∆::kan</i> (<i>B. anthracis</i> (Sterne))	(15)						

TABLE S1: Bacterial strains used throughout this study.

А

VH1a2	CTC	GAG	GCC	GCC	ACC.	ATG	GAG	ACT	GGG	CTG	CGC	TGG	CTT	CTC	CTG	GTC	GCT	GTG	CTC.	AAA
	L	Е	А	А	Т	М	Е	Т	G	L	R	W	L	L	L	V	А	V	L	Κ
VHy33	CTC	GAG	GCC	GCC.	ACC.	ATG	GAG	ACT	GGG	CTG	CGC	TGG	CTT	CTC	CTG	GTC	GCT	GTG	CTC.	AAA
	L	Е	А	А	Т	М	Е	Т	G	L	R	W	L	L	L	V	А	V	L	Κ
VH1a2	GGT	GTC	CAG	TGT	CAG	TCG	GTG.	AAG	GAG	TCC	GAG	GGA	GGT	CTC	TTC	AAG	CCA	ACG	GAT.	ACC
	G	V	Q	С	Q	S	V	Κ	Е	S	Е	G	G	L	F	Κ	Ρ	Т	D	Т
VHy33	GGT	ATC	CAG	TGT	CAG	CAG	CTG	GAG	CAG	TCC	GGA	GGA	GGA	GCC	GGA	GGA	GGC	CTG	GTC.	AAG
	G	Ι	Q	С	Q	Q	L	Е	Q	S	G	G	G	А	G	G	G	L	V	Κ
VH1a2	CTG	ACA	CTC	ACC	TGC.	ACA	GTC	TCT	GGA	TTC	TCC	CTC.	AGT.	AGC	AAT	GCA	ATA	AGC	TGG	GTC
	L	Т	L	Т	С	Т	V	S	G	F	S	L	S	S	Ν	А	I	S	W	V
VHy33	CCT	GGG	GGA'	TCC	CTG	GAA	CTC	TGC	TGC	AAA	GCC	TCT	GGA	TTC	TCC	CTC	AGT	AGC	AGC	TAC
	Ρ	G	G	S	L	Е	L	С	С	Κ	А	S	G	F	S	L	S	S	S	Y
VH1a2	CGC	CAG	GCT	CCA	GGG.	AAC	GGG	CTG	GAA	TGG	ATC	GGA	GCC.	ATT	GGT	AGT	AGT	GGT	AGC	GCA
	R	Q	А	Ρ	G	Ν	G	L	Е	W	I	G	А	I	G	S	S	G	S	А
VHy33	TGG	ATA'	TGC	TGG	GTC	CGC	CAG	GCT	CCA	GGG	AAG	GGG	CTG	GAG	TGG	ATC	GGA	TGC	ATT	TAT
	W	Ι	С	W	V	R	Q	А	Ρ	G	Κ	G	L	Е	W	I	G	С	I	Y
VH1a2	TAC	TAC	GCG	AGC	TGG	GCG.	AAA	AGC	CGA	TCC	ACC	ATC.	ACC.	AGA	AAC	ACC	AAC	CTG	AAC	ACG
	Y	Y	А	S	W	А	Κ	S	R	S	Т	Ι	Т	R	Ν	Т	Ν	L	Ν	Т
VHy33	GCT	GGT	AGT.	AGT	GGT.	AGC.	ACT	TAC	TAT	GCG	AGC	TGG	GTG.	AAT	GGC	CGA	TTC	ACT	CTC	TCC
	A	G	S	S	G	S	Т	Y	Y	А	S	W	V	Ν	G	R	F	Т	L	S
VH1a2	GTG	ACT	CTG	AAA	ATG.	ACC.	AGT	CTG.	ACA	GCC	GCG	G								
	V	Т	L	Κ	М	Т	S	L	Т	А	А									
VHy33	AGA	GAC	ATC	GAC	CAG.	AGC.	ACA	GGT	TGC	CTA	CAA	CTG.	AAC.	AGT	CTG	ACA	GCC	GCG	G	
	R	D	I	D	Q	S	Т	G	С	L	Q	L	Ν	S	L	Т	А	А		
В																				

Vк	GGI	GGA	.GGA	GGC	TCA	GCI	GAC	'ATT	GTG	ATG	ACC	CAG	ACT	CCA	.GCC	TCC	GTG	GAG	GCA	GCT
	G	G	G	G	S	Α	D	I	V	М	Т	Q	Т	Ρ	А	S	V	Е	А	А
Vλ	GGI	GGA	GGA	GGC	TCA	CAC	GCCI	GTO	CTG	ACT	CAG	TCG	CCC	TCT	GCA	TCT	GCI	GCC	CTG	GGA
	G	G	G	G	S	Q	Ρ	V	L	Т	Q	S	Ρ	S	А	S	Α	Α	L	G
Vк	GTG	GGA	GGC	ACA	GTC	ACC	CATC	'AAG	TGC	CAG	GCC	AGT	CAG	GGC	ATT	AGT	AGT	TAC	TTA	GCC
	V	G	G	Т	V	Т	I	Κ	С	Q	А	S	Q	G	I	S	S	Y	L	А
Vλ	TCC	TCG	GCC	AAG	CTC	ACC	CTGC	ACI	CTG	AGC	AGT	GCT	CAC	AAG	ACC	TAC	TAT	'ATT	'GAA	TGG
	S	S	А	Κ	L	Т	С	Т	L	S	S	А	Η	Κ	Т	Y	Y	I	Е	W
Vк	TGG	TAT	CAG	CAG	AAA	CCF	AGGG	CAG	CCI	CCC	AAG	CTC	CTG	ATC	TAC	AGG	GCA	TCC	ACT	CTG
	W	Y	Q	Q	Κ	Ρ	G	Q	Ρ	Ρ	Κ	L	L	I	Y	R	А	S	Т	L
Vλ	TAT	CAG	CAG	CAG	CAA	GGG	GAG	GCC	CCT	CGG	TAC	CTG	ATG	CAG	CTT	AAG	AGT	GAT	GGA	AGC
	Y	Q	Q	Q	Q	G	Е	Α	Ρ	R	Y	L	М	Q	L	Κ	S	D	G	S
Vк	GCA	ATCT	GGG	GTC	CCA	TCO	GCGG	TTC	'AAA	.GGC	AGT	GGA	TCT	GGG	CCG	CAG	TTC	GCI	CTC	AGC
	A	S	G	V	Ρ	S	R	F	Κ	G	S	G	S	G	Ρ	Q	F	Α	L	S
Vλ	TAC	CACC	AAG	GGG	ACC	GGG	GTC	CCI	GAT	CGC	TTC	TCG	GGC	TCC	AGC	TCT	GGG	GCI	GAC	CGC
	Y	Т	Κ	G	Т	G	V	Ρ	D	R	F	S	G	S	S	S	G	Α	D	R
Vк	ATC	CAGC	GAC	CTG	GAG	TGI	GCC	GAT	GCT	GCC	ACT	TAC	TAC	TGT	CAG	ACC	TAT	TAT	TAT	'ATT
	I	S	D	L	Е	С	Α	D	А	А	Т	Y	Y	С	Q	Т	Y	Y	Y	I
Vλ	TAC	TTG	ATC	ATC	TCC	AGC	CGTC	CAG	GCT	GAG	GAC	GAA	GCT	GAC	TAC	ATC	TGT	GGI	GTA	ACT
	Y	L	I	I	S	S	V	Q	А	Е	D	Е	А	D	Y	I	С	G	V	Т
Vк	AGI	GGT	AGT	AGT	TAT	GGI	GCT	TTC	GGC	GGA	GGG	ACC	GAG	GTG	GTT	GTC	AAA	GGI	'GAA	TTC
	S	G	S	S	Y	G	А	F	G	G	G	Т	Е	V	V	V	Κ	G	Е	F
Vλ	GGI	AGT	AAT	GTT	TAT	GTC	GTTC	'GGC	GGA	GGG	ACC	CAG	CTG	ACC	GTC	ACA	GGT	GAA	TTC	
	G	S	Ν	V	Y	V	F	G	G	G	Т	Q	L	Т	V	Т	G	Е	F	

FIGURE S1. Nucleotide and amino acid sequences of $V_{\rm H}$ and $V_{\rm L}$ germline genes

used for scFv-Ig constructs. A, $V_H la2$ and $V_{Hy}33$ sequences. B, V_{κ} and V_{λ} sequences.

For details of scFv-Ig construction, refer to Materials and Methods.

scFv-Ig ⁺ Isolate	Growth conditions	16S rRNA gene sequence identity
1	LB, aerobic	Bacillus pumilus
2	Blood agar, aerobic	Bacillus subtilis, Bacillus ameloliquefaciens ¹
3	Phenylethanol, aerobic	Bacillus pumilus
4	Blood agar, aerobic	Bacillus subtilis subspecies
5	Blood agar, anaerobic	Bacteroides uniformis
6	Blood agar, anaerobic	Bacteroides ovatus

TABLE S2. Identity of scFv-Ig⁺ *intestinal isolates from Fig. 1.*

¹Based on the 16S rRNA gene sequence of the second isolate, we were unable to

distinguish between Bacillus subtilis and Bacillus ameloliquefaciens. As a result, this

isolate is designated by both names throughout the manuscript.

FIGURE S2. Electrophoretic analysis of extracts from intestinal *Bacillus* spores

from Fig. 1*F***.** To assess the efficiency of the spore protein extractions, lysates from the indicated intestinal *Bacillus* spores were analyzed by SDS polyacrylamide gel electrophoresis followed by Coomassie blue staining. While many proteins were extracted from spores, scFv-Ig bound to only a small number of proteins, demonstrating the specificity of scFv-Ig binding.

FIGURE S3. Flow cytometric analysis of *Bacillus* spores stained with scFv-Ig (related to Fig. 2). Purified spores of the indicated *Bacillus* species were stained with scFv-Ig followed by mouse anti-rabbit Fc γ and DylightTM 649-conjugated goat Fab antimouse IgG. The FSC vs SSC plots are depicted in the top rows, and the scFv-Ig histograms are shown in the bottom rows. The scFv-Ig plots (unshaded histograms) were compared to staining with indirect reagents alone (shaded histograms). A limited amount of binding was observed to the surface of *B. subtilis* and *B. cereus* spores.

FIGURE S4. Western blot analyses of *B. anthracis* spore proteins (related to Fig. 3).

A-C, *E. coli* lysates uninduced (U) or induced (I) to produce the indicated T7-tagged *B. anthracis* protein were probed with anti-T7-HRP (A) or rabbit IgM from serum of a 6-day-old (B) or 3-week-old (C) rabbit. Arrows indicate IgM binding. These data suggest that although all four *B. anthracis* proteins were expressed, IgM bound only to ExsK.

FIGURE S5. Electrophoretic analysis of scFv-Ig proteins from Fig. 4. Coomassie blue-stained SDS polyacrylamide gels (left) and western blots (right) of purified scFv-Ig proteins probed with HRP-conjugated donkey anti-rabbit IgG. Proteins were either left unreduced (*A*) or reduced (*B*) prior to gel loading to assess the purity as well as the aggregation status. V_{HI} encodes V_{Ha} ; $V_{Hy}33$ encodes V_{Hn} . These data suggest that the aggregation status of the scFv-Ig proteins does not affect binding to spores.

FIGURE S6. Flow cytometric analysis of *bclA* mutant *B. anthracis* spores stained with scFv-Igs from Fig. 4. *A*, FSC vs SSC dot plot spores. Gate indicates population used for staining analyses in *B* and *C. B*, Histograms of spores stained with V_H1 , V_{λ} scFv-Ig followed by mouse anti-rabbit Fc γ and FITC-conjugated goat Fab anti-mouse IgG (unshaded) or secondary antibodies alone (shaded). *C*, Histogram overlay comparing V_H1 , V_{κ} -scFv-Ig (from Fig. 2*C*) and V_H1 , V_{λ} -scFv-Ig staining (from part *B*). These data confirm that V_H1 , V_{κ} -scFv-Ig binds more intensely to spores than does V_H1 , V_{λ} -scFv-Ig.