
Current Biology, Volume 22 

Supplemental Information 

Stochastic, Adaptive Sampling 

of Information by Microvilli 

in Fly Photoreceptors 

Zhuoyi Song, Marten Postma, Stephen A. Billings, Daniel Coca, Roger C. Hardie,  
and Mikko Juusola 
 

Supplemental Inventory 

1. Supplemental Figures and Tables 

 Figure S1, related to Figure 1 

 Figure S2, related to Figures 1–3 

 Figure S3, related to Figure 3 

 Figure S4, related to Figure 5 

 Figure S5, related to Figure 6 

 Table S1, related to Figures 1–7 

 Table S2, related to Figure 2 

2. Supplemental Experimental Procedures 

3. Supplemental References 

 



 
 

Figure S1. Schematic Drosophila Photoreceptor Model Structure and Definitions for 
Bump Parameters, Related to Figure 1  

 (A) Drosophila photoreceptor model consists of four modules: i. Random photon absorption 
model. ii. Model for the phototransduction cascade in a single microvillus. iii. Integration of 
LIC from 30,000 microvilli. iv. Hodgkin-Huxley model for the photoreceptor cell membrane [1, 
2]. 

(B) Modeling photon absorption in microvilli. Light pulse contains 3x105 photons/s, which are 
absorbed by a population of microvilli according to Poisson statistics. Each microvillus 
absorbs photons discontinuously, generating a photon absorption series (gray dots). Only 
very rarely one of them may absorb 2 photons within the same time interval. 1 ms time 
interval was used.  

 (C) Flow chart of the stochastic bump model for photon series input. X is the state vector. V 
is the state transfer matrix, which is composed of M vectors: . In the 
reaction Rµ, the state is updated by Vµ. h is the M-length vector of reactant-pair numbers. c 
is the M-length vector of stochastic reaction-rates. a is reaction-propensity vector and ‘○’ in 
the operation of ‘a=h○c’ means element wise product. tend is the termination simulation time, 
Tph is a vector recording the time point when there is photon stimuli, and i is iteration index 
for Tph. 

(D) Electrical circuit of the HH-cell membrane model of Drosophila R1-R6 photoreceptor. 
Cell membrane is modeled as a capacitor, voltage-gated channels as voltage-regulated 
conductances, leak channels as fixed conductances, reversal potentials for different ion 
species as DC-batteries. Abbreviations: ksh: Shaker; dr, delayed rectifier; novel, novel K+; 
Kleak: K+ leak; cl, chloride leak conductance. 



 
 
Figure S2. Definition of Bump Parameters and Characterization of How Latency 
Affects Fast Adaptation, Related to Figures 1–3 

 (A) Bump latency is the time interval from photon stimulus to the first opening of TRP/TRPL 
channel (a to b). Bump duration is the duration from the first opened TRP/TRPL channel to 
the last closed TRP/TRPL channel of a bump (b to c). Refractory period is the time interval 
between two bumps minus the latency for the second bump. The exact latency for the 2nd 
bump during continuous photon stimuli is difficult to resolve; thus, the refractory period is 
taken as the interval (c to d) 

(B) Light-induced current (LIC; red) responses of the full stochastic model to a bright light 
pulse. Black dotted line highlights the summed response of the first bumps alone. Fast 
adaptation causes the decay of the initial sharp transient in a bright light pulse response. 
~60% of fast adaptation is structural, caused by reduction in the number of activated 
microvilli, and the rest is by bump adaptation (see Figure 2G). Slow adaptation includes the 
slow decay to a plateau (as seen at the end of the light pulse in the red trace). These results 
were obtained by simulating 30,000 stochastic phototransduction cascades. In the model, 
slow adaptation was regulated by global negative feedback parameter, ns, which increased 
exponentially with time (Table S2; see also Figure S3B). 

(C) The width of the transient can be regulated by the bump latency, because the bump 
latency determines the jitter of the first bumps within microvilli population. Here, we summed 
up 30,000 “mock” bump series, using fixed values for the bump amplitude (1.8 pA), bump 
duration (51 ms), and refractory period (0 ms).   

(D) Drosophila photoreceptors with variable degrees of dark-adaptation generate voltage 
responses to a bright blue-green pulse with variable transient widths. The width of the 
transient varies with past light exposure; the less dark-adapted the cell the narrower the 
transient. Use of intense blue light affects the rhodopsin:metarhodopsin ratio, at times 
inducing prolonged depolarizing after potentials (PDA; [3]). 

(E) Voltage responses simulated by the combined model resemble in vivo recordings to the 
same stimulus; PDA is not modeled. Simulations show that the transition from prolonged 
dark-adaptation to light-adaptation [4, 5], which narrows the width of the early transient 
voltage responses, can be replicated by narrowing the bump latency distribution (see also 
Figure S3F) and understood as a memory of light exposure [6]; presumably mediated by 
intracellular calcium-accumulation affecting the microvilli globally. 



 
 

Figure S3. Global Regulation of Bump Parameters in the Simulations, Related to 
Figure 3 

 (A) Diagram showing how the global voltage feedback was calculated. 

(B-D) Roles of the global feedback parameter, ns, (Eq. 32) on bump shape, bump latency 
distribution and refractory period distribution. Note that in naturalistic stimulation experiments 
shown in Figure 4, ns was always <20 while la was fixed. Therefore, in that range, 
brightening stimulation reduces the mean refractory period. 

(B) ns was used to adjust the bump shape in the simulations.  

(C) Changing this parameter has much less impact on bump latency distribution.  

(D) When bumps are made briefer, as used in the simulations at bright light levels, the tail of 
the refractory period distribution prolongs (peak shortens cf. dark-adapted). The overall 
range of these refractory period distributions agrees with the estimates obtained from arr25 
mutant experimental data [7]. Latency and refractory period were used as defined in Figure 
2A. 

(E-G) Roles of the latency width-regulator parameter, la, (Eq. 33) on bump shape, bump 
latency distribution and refractory period distribution. 

(E) la was used to adjust the bump latency distribution in the simulations. 

(F) Changing la had relatively little impact on bump shape (0.1≤ la ≤1).  

(G) Changing la had relatively little impact on bump refractory distribution (0.1≤ la ≤1). 





Figure S4. Related to Figure 5 

Bump waveform does not affect the rate of information transfer; as long as the bumps are 
briefer than the stimulus changes they encode. But together with the stochastic latency and 
refractory period distributions, the bump waveform regulates the size (gain) and speed 
(frequency range) of macroscopic light-induced currents (LIC). 

(A) LIC to dim naturalistic stimulation (NS) generated by mock-simulations, which integrated 
either identical large bumps or identical small bumps to dim naturalistic light intensity series 
(NS). 

(B) The mean LICs appear similar when normalized, but as expected, the small bumps sum 
up current deflections with somewhat finer time and amplitude resolution. 

(C) Signal-to-noise ratio (SNR) is equal for the both light current responses. 

(D) According to the data processing theorem [8, 9], bump shape is a filter that affects signal 
and noise equally. Therefore, when having equal number of bumps (samples) of equal 
timing, the rate of information transfer of the two light current responses must be (and is) the 
same. 

The two simulations in (A and B) were done by replacing each stochastically absorbed 
photon (at mean intensity of 3,000 photons/s) with either identical large or identical small 
bumps (Supplemental text, p. 20). The simulations ignore noise from sources other than 
bumps. 

(E-G) Contribution of bump parameters to signal filtering. 

(E) Broadening the bumps (left) increases the gain and low-pass filtering of the macroscopic 
responses to naturalistic light inputs (middle), reducing the bandwidth of linear frequency 
responses (right).  

(F) Broadening the latency distribution (left) increases low-pass filtering of the macroscopic 
responses to naturalistic light inputs (middle), reducing the bandwidth of linear frequency 
responses (right). 

(G) Broadening the refractory period distribution (left) has little effect on the filtering of the 
responses (middle) and their frequency range (right). In these simulations, both the bump 
shape and latency distribution were kept very brief, extending the gain to high stimulus 
frequencies. However, the broader the refractory period, the fewer absorbed photons 
generate bumps. This reduces the sample rate and, thus, the rate of information transfer. 

The gain estimate of the linear transfer function between NS and the average light current 
was obtained by standard methods [5, 6], based on Eq. 1 (Supplemental text, p. 10). 

(H) Real recordings (above) to bright NS compared to similar stochastic simulations 
(middle), and to mock stimulations, in which the bumps are decorrelated (below). Thicker 
traces show the means, thin light-gray traces show 100 individual responses. Note that real 
recordings contain also noise from damage, micro-saccadic eye movements [10], and 
molecular translocations [11-14]. In mock simulations, LIC was filtered by the HH-membrane 
model to approximate voltage responses.  

(I) Comparison of the variability of the real recordings and stochastic and mock simulations 
to bright and dim NS. The variability in the stochastic simulations resembles that in the real 
recordings, both to the bright and dim NS, whereas the mock simulations (with decorrelated 
bumps) to dim NS are considerably noisier. 



 
 
Figure S5. Membrane Properties of Blowfly and Killer Fly R1-R6 Photoreceptors, 
Related to Figure 6 

 (A, B) Voltage responses of real Calliphora and Coenosia photoreceptors, respectively 
(above), and those of their Hodgkin-Huxley photoreceptors membrane models (below) to 
injected current steps in darkness. In both cases, depolarizing current steps cause 
pronounced outward rectification due to activation of delayed-rectifier voltage-gated 
potassium channels. 



Table S1. Summary of Fixed Phototransduction Parameters, Related to Figures 1-7 

 
Parameter Definition Value 
Kp   

 Dissociation coefficient for calcium positive 
feedback 

0.3 mM    
(tuned) 

Kn     
 Dissociation coefficient for calmodulin negative 

feedback 
0.18 mM  
(tuned) 

mp         
 Hill constant for positive calcium feedback 2                 

[15] 

mn           Hill constant for negative calmodulin feedback 3                 
[15] 

m             Co-operativity parameter of D* to TRP/TRPL 
channels 

2                 
[15] 

hM*      Strength of negative calmodulin feedback to M* 40              
(tuned) 

hPLC*      Strength of negative calmodulin feedback to PLC 11.1            
[15] 

hD*     Strength of negative calmodulin feedback to D* 37.8            
[15] 

hT*,p   
 Strength of positive calcium feedback to 

TRP/TRPL channels 
11.5          
(tuned) 

hT*,n   Strength of negative calmodulin feedback to 
TRP/TRPL channels 

10             
(tuned) 

κG*        Rate of G* activation 7.05 s-1
    

(tuned) 

κPLC*   Rate of PLC* activation 15.6 s-1
    

(tuned) 

κD*        Rate of D* activation 1300 s-1
   

(tuned) 

κT*
 Rate of TRP/TRPL channels’ activation 150 s-1

     
(tuned) 

KD* Transition rate from D* to opening of TRP/TRPL 
channels 

100             
(tuned) 

γM*      Deactivation rate of M* 3.7 s-1
         [15] 

γG*      Conversion rate from GαGDP to G protein 3.5 s-1
      

(tuned) 

γPLC*      Deactivation rate of PLC* 144 s-1
     

(tuned) 

γD*      Deactivation rate of D* 4 s-1
         

(tuned) 

γT*      Deactivation rate of TRP/TRPL channels 25 s-1
       

(tuned) 

γGAP   Deactivation rate of G-protein by GTPase activity 3 s-1
         

(tuned) 

TT         Total number of TRP/TRPL channels 25              [16] 

GT      Total number of G-protein 50              [17] 

PLCT      Total number of PLC 100            [16] 

PCa      Percentage of Ca2+ in LIC 40%           [18] 

IT*        Average current through one opened TRP/TRPL 
channel 

0.68 pA     [4] 

[Na+]o   Extracellular sodium concentration 120 mM     [19] 



[Na+]i     Intracellular sodium concentration 8 mM         [18] 

[Ca2+]o     Extracellular calcium concentration 1.5 mM      [19] 

[Ca2+]id   Intracellular calcium concentration in the dark  160 nM      [20] 

[C]i         Concentration of calmodulin inside a single 
microvillus 

0.5 mM      [21] 

n              Binding sites for calcium on calmodulin 4                [22] 

F Faraday constant 96,485 C/mol 
T Absolute temperature 293 K 
R Gas constant 8.314  JK-1mol-

1 
KU           Rate of Ca2+ uptake by calmodulin 30 mM-1s-1

  [15] 

  KR    Rate of Ca2+ release by calmodulin 5.5 s-1
         [15] 

KCa Rate of Ca2+ diffusion from microvillus to somata 1,000 s-1
  

(tuned) 

V Microvillus volume 3·10-12 μl 
KNaCa Scaling factor for Na+/Ca2+ exchanger model 3*10-8 pA/mM4 
Cm Overall membrane capacitance (includes the cell 

body + rhabdomere) 
62.8 pF       [1] 

 
Where possible, the parameter values were taken from published estimates, with the 
corresponding references in parentheses. If the dynamics of underlying processes had not 
been characterized before (such as those for Ca2+ feedbacks), the parameter values were 
tuned to generate the appropriate bump statistics. It is possible that these tuned values may 
deviate from biophysical reality. However, these parameter values produced macroscopic 
responses that matched those of the experimental recordings. Thus, possible inaccuracies in 
the parameter values should not influence the general conclusions of this paper. In the 
simulations of this paper, all the parameters were fixed to the values of this table.  

We further performed tests that probed the robustness and predictability of our 
simulated results: 

(a) By comparing the results of mock simulations, in which stochastically generated bumps 
were replaced by large or small identical bumps, to those of actual stochastic simulations 
(Figures S4A-D); and further to the real recordings. (b) By comparing results of the 
stochastic simulations to those of the mock simulations, in which stochastically generated 
bumps were replaced randomly by bumps with similar amplitude and width distributions 
(Figure 5A). These tests verified that, as long as the tuned parameters generate bump 
production dynamics that mimic those seen in the given light conditions, the model outputs 
are realistic 

Therefore, this computational approach, which combines intracellular 
electrophysiology with biophysical modeling, is very robust and does not require full 
knowledge of all molecular players and dynamics in the phototransduction. Indeed, whilst we 
have endeavored to adhere to the detailed molecular knowledge of fly phototransduction, 
from a computational viewpoint the exactness of the simulated molecular interactions is not 
important. As long as the photoreceptor model contains the right number of microvilli, each 
of which is a semi-autonomous sampling unit, and their stochastic bump dynamics (average 
waveforms, latency distribution and refractory period) approximate those in the real 
recordings, it will sample and process information like a real photoreceptor. 

 
 

 



Table S2. Parameters Used for the Slow Adaptation; Exponential Decay, Related to 
Figure 2 

Variable Dim 
background 

Bright 
background 

0sn  1 2 

snA  4 200 

sn  3,000 1,000 

 
ns0 is the initial condition of the global negative feedback parameter. snA is the upper-bound 

for the dynamic increase in ns. sn  is the time constant of the negative feedback. 



Supplemental Experimental Procedures 

Patch-Clamp Recordings 

For whole-cell photoreceptor recordings, dissociated ommatidia were prepared as previously 
described [23] from newly eclosed adult w1118 flies and transferred to the bottom of a 
recording chamber on an inverted Nikon Diaphot microscope. The bath contained (in mM): 
120 NaCl, 5 KCl, 10 N-Tris-(hydroxymethyl)-methyl-2-amino-ethanesulphonic acid, 4 MgCl2, 
1.5 CaCl2, 25 proline and 5 alanine, pH 7.15. The intracellular pipette solution was (in mM): 
140 K gluconate, 10 N-Tris-(hydroxymethyl)-methyl-2-amino-ethanesulphonic acid 4 
Magnesium-ATP, 2 MgCl2, 1 NAD and 0.4 Sodium-GTP, pH 7.15. All chemicals were 
obtained from Sigma-Aldrich. Whole-cell voltage clamp recordings were made at room 
temperature (20 ± 1° C) at –70 mV (including correction for –10 mV junction potential) using 
electrodes of resistance ~10-15 M. Series resistance values were generally below 30 M 
and were routinely compensated to >80%. Data were collected and analyzed using an 
Axopatch 200 amplifier and pCLAMP10 software (Molecular Devices, Union City CA). 
Photoreceptors were stimulated via a green light-emitting-diode. Intensities were calibrated 
in terms of effectively absorbed photons in wild type photoreceptors by counting quantum 
bumps at low intensities. 

 

Intracellular Recordings 

We recorded voltage responses in R1-R6 photoreceptors of wild-type red-eye fruit flies 
(Drosophila melanogaster), blowflies (Calliphora vicina) and killer flies (Coenosia attanuata) 
to light and current stimuli, using sharp quartz microelectrodes (120–220 M with 3 M KCl) 
fabricated with a Sutter Instruments P2000 puller. How to prepare flies for in vivo 
experiments and the general electrophysiological methods are explained in [5, 9, 24]. To 
minimize effects of damage and external noise, such as instrumental noise or extrinsic 
neural/muscle activity, on the analysis, only very stable recordings of low-noise and high 
sensitivity were selected for this study. Such photoreceptors had dark-adapted resting 
potentials <-60 mV and >50 mV responses to saturating light impulses. 

 

Light Stimuli 

Two light sources were used in the experiments. In Figure 4, which tested encoding of 
maximally bright stimuli (similar to full daylight), the light source was a high power light 
emitting diode (Seoul Z-Power LED P4 star, white, 100 Lumens) driven by an OptoLED 
(Cairn Research Ltd, UK) and fitted with a lens and a pinhole (subtended angle to 0.7°, as 
seen by the flies) [24]. In Figure 3, we used a cluster of high-power LEDs, in which output 
was scaled in Log10/2 steps by a custom-built motorized neutral density filter wheel and 
focused on one end of a light guide [5, 9]. The light sources were attached onto a Cardan 
arm system, enabling exact positioning of the stimuli at the centre of a photoreceptors 
receptive field. Light stimuli (pulses, pseudorandom and naturalistic light intensity series) 
were generated and sampled together with voltage responses at 1-10 kHz using a National 
Instruments 12-bit A/D converter, controlled by a custom-written software system (Biosyst [5, 
9, 24]) in Matlab environment. The stimuli and responses were filtered at 500 Hz (KEMO 
VBF/23 low pass elliptic filter), before these were sampled and stored to the hard-drive of the 
computer. The data was analyzed offline using Matlab. 

 

Linear Impulse Responses 

A predetermined luminance level (BG-5 to BG0) was switched on for 10 s, followed by 
repeated presentations (10-15 times) of a 10 s long pseudorandom contrast stimulus, c(t), 
superimposed upon it. c(t) had Gaussian amplitude distribution and a ‘flat’ power spectrum 
up to 200 Hz. It elicited similar response dynamics as reported earlier [5, 9, 24], without 
wasting much power on higher frequencies that these photoreceptors cannot follow. 

 



Transfer function, T(f), between the average response, or ‘signal’ s(t), and the 
contrast stimuli, using their 1,024-points long spectral estimates, S(f) and C(f), respectively, 
is: 
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Here <> indicate the average over the different stretches, and * the complex 
conjugate. The linear impulse response, or 1st order Wiener kernel, was obtained by taking 
the inverse Fourier transform of its frequency response: 

 

 )()( 1 fTFtk       (2) 

 

Signal-to-Noise Ratio 

1 s long naturalistic light intensity series (10,000 points), selected from van Hateren natural 
stimulus collection, was repeated over 100 times, and the evoked voltage responses of a 
photoreceptor were recorded. Because of their systematic adaptive trends, the first 5-20 
traces were rejected from the analysis. For each recording series (Figures 4 and 6), the 
averaged response was the ‘signal’, while the ‘noise’ was the difference between individual 
traces and the ‘signal’. Hence for an experiment using n trials (with n = 50-100) there is one 
‘signal’ trace and n ‘noise’ traces.  

For the analysis, the ‘signal’ and ‘noise’ traces were divided into 50% overlapping 
stretches and windowed with a Blackman-Harris 4-term window, each giving three 500-
points long samples. As all the data from the 50-100 voltage traces was used, we obtained 
150-300 spectral samples for the noise, and 3 spectral samples for the signal. These were 
averaged, respectively, to improve the estimates. 

Signal-to-noise ratio SNR(f) of the voltage responses was calculated from the signal 
and noise power spectra, <|S(f)|2> and <|N(f)|2>, respectively, as their ratio (Figure 4G), 
where | | denotes the norm and <> the average over the different stretches [5]. 

 

Bump and Latency Distribution Analysis 

It has been demonstrated in different insect photoreceptors that at each light level (adapting 
background), or during continuous white-noise light contrast stimulation, the measured 
voltage noise of light-adapted photoreceptors, |N (f)|

2, contains mostly light-induced noise [5, 
6, 25, 26] (i.e. bump noise: |B (f)|

2. Thus: 
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From the voltage noise power (Figure 3G), the effective bump duration, Td, can be 
estimated [5, 6, 25-28]; assuming that the shape of the bump function, b(t) (Figure 3I), is 
proportional to the Gamma-distribution � (t;n, τ): 
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This assumption has been shown to be true for single bumps [6]. The two 
parameters, n and τ, can be obtained by fitting a single Lorentzian to the experimental power 
spectrum of the bump voltage noise (Figure 3H): 
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Where~ indicates the Fourier transform. The effective bump duration, Td (i.e., the 
duration of a square pulse with the same power), is then: 
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The brighter the light stimulus, the briefer the average bump duration is. In 
Drosophila, brightening reduces the bump duration from ~40 ms (dim background) to ~10 
ms (bright background) [5, 25] (Figure 3I). 

Because the estimated bump shapes, b (t), full-fill the minimum phase criteria [4, 5, 
25, 29], the variance in timing of individual bumps, i.e. their latency distribution, l(t), can be 
estimated accurately from the voltage responses at different adapting backgrounds. This 
analysis greatly benefits from the linearizing effect, which white-noise (pseudorandom) 
contrast stimuli has on photoreceptor output. Therefore, based on the adapting bump 
model[30], we can assume that the underlying processes are linear and that a 
photoreceptor’s impulse response, k (t), can be described as a convolution of the average 
bump waveform, b (t), and the distribution of bump latencies, l(t), for a given light intensity 
level. 
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Thus, latency distribution can simply obtained by deconvolving the bump shape out 
of the impulse response (Figure 3J). 

 

The Rate of Information Transfer 

The response of a photoreceptor in the voltage domain to naturalistic stimulation (NS) is 
nonlinear and non-Gaussian [9, 31]; for such conditions the classic Shannon formula for 
information capacity is not valid. Therefore, to calculate the rate of information transmitted by 
the photoreceptors, we used the triple extrapolation method, which has been shown to 
obtain robust estimates from continuous neural responses [9]. 

The voltage responses of the Drosophila, Coenosia or Calliphora photoreceptors 
were first digitized by dividing these into time intervals, Tw, that were subdivided into smaller 
intervals of tw = 1 ms. This procedure selects ‘words’ of length Tw with Tw/tw ‘letters’. The 
mutual information between the voltage response S and the light contrast stimulus is then 
the difference between the total entropy, Hs: 
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where PS(si) is the probability of finding the i-th word in the response, and the noise entropy 
HN: 
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where Pi(τ) denotes the probability of finding the i-th word at a time t after the initiation of the 
trial. This probability Pi(τ) was calculated across trials of identical NS. The values of the 
digitized entropies depend on the length of the ‘words’ T, the number of voltage levels v 
(upsilon) and the size (as %) of the data file, HT,ν,size. The rate of information transfer was 
then obtained taking the following three successive limits: 
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These limits were calculated by extrapolating the values of the experimentally 
obtained entropies. Because after removing the first trial (the first 5-20 traces when a trend 
caused by adaption could be seen), we typically used the next 100 traces (1 kHz sampling 
rate), thereby having a response matrix of 1,000 points x 100 trials for the analysis. The total 
entropy and noise entropy were then obtained from the response matrices using linear 
extrapolation with the following parameters: 

 

size = 5/10, 6/10,…,10/10 of data; ν = 6, 7,…,11 voltage levels; T-1=3, 4,…,6 points. 

 

Counting Microvilli in Rhabdomeres  

We used published estimates for the number of microvilli in Drosophila and Calliphora R1-
R6 outer photoreceptors [17, 32]. The number of microvilli in Coenosia R1-R6 
photoreceptors was estimated using the published EM images, which provided the length of 
rhabdomeres in the retina and their transverse cuts [24] (giving the width of an average 
microvillus and the number of microvilli in a plane). These measurements gave the number 
of microvilli in rows and columns in the rhabdomere, and their product giving an estimate of 
the total number of microvilli. The number of microvilli was 30,000, 90,000 and 30,000 for 
Drosophila, Calliphora and Coenosia respectively. 

 

Biophysical Model of Drosophila Photoreceptor 

To simulate voltage responses of photoreceptors to light stimuli, we constructed a 
biophysical model that approximates the molecular reactions underlying phototransduction, 
[Ca2+]i dynamics and the electrical response to ionic currents. The model was validated both 
in the current (in vitro voltage-clamp) and voltage (in vivo current-clamp) domains by 
comparing experimentally measured and simulated responses. The model was able to 
generate realistic responses to time series of various light intensities, including naturalistic 
stimuli, providing detailed dynamics of the key molecules. Therefore, these simulations could 
be examined to reveal and quantify biophysical mechanisms of light adaptation. 

The model contains four modules (Figure S1A), reflecting the real structure and 
function of a Drosophila photoreceptor. The first module (i) is a random photon absorption 
model, which is based on Poisson statistics [33]; it governs the temporal history of 
photon absorptions in each microvillus. The second module (ii) models the chain of 
stochastic biochemical reactions in the phototransduction cascade inside a microvillus. It is 
assumed that 30,000 microvilli, which make up the rhabdomeres of a R1-R6 photoreceptor 
[34], capture and transduce the energy of photons independently. In the third module (iii), 
the sum of light-induced currents (LICs) from all the microvilli represents the macroscopic 
responses. The fourth module (iv) is a Hodgkin-Huxley model of the photoreceptor cell 
membrane [1, 2]; it transduces LICs into voltage responses. 



(i) Random Photon Absorption Model 

The input to this module is the number of photons absorbed by the rhabdomere at each time 
interval (1ms), while the output is the number of photons absorbed by each microvillus. Light 
intensities, used in the simulations, were calibrated using in vivo experiments in terms of 
average absorbed photons, by counting quantum bumps at low intensities. In the model, 
photons are absorbed randomly following Poisson statistics [33], leading to variable 
numbers of photons absorbed by each microvillus across the rhabdomere (Figure S1B). 
Importantly, because the LIC/photon ratio in each microvillus changes with the number of 
photons it absorbs, the random photon absorption model is crucial for producing a realistic 
light input for each microvillus.  

We assume that each microvillus absorbs photons independently with all of them 
having equal absorption probabilities. This assumption simplifies calculations by eliminating 
the role of geometry in the microvillar array. In reality, the lengths of microvilli differ in the 
rhabdomeres; they shrink along the longitudinal axis and taper across the same section, 
being longest in the middle. It is reasonable to think that the shorter the microvillus, the less 
its photon absorption probability. Furthermore, their photon absorption probabilities at the 
bottom are likely to be less than those at the top of photoreceptor cell. Since the simulations 
matched the experimental results well, no further probabilistic scaling of the photon flux 
(through the tapering microvilli) was done here.  

If the light input contains Nph photons at the given time interval (1 ms), the average 
number of photons a single microvillus can absorb is λM = Nph/Nmicro, where Nmicro = 30,000 
denotes the number of microvilli in the rhabdomere. Following Poisson statistics, the fraction 

of microvilli that absorb k photons is   !/ kekp Mk
M

  , so we can uniformly draw p(k)Nmicro 
microvilli to absorb k photons at this time point, where k < kn and kn denotes the smallest 
number that satisfies p(kn) < 1/ Nmicro. This procedure iterates along the light time series; 
each microvillus then obtains an absorbed photon series to stimulate its phototransduction 
cascade. 

 

(ii) Phototransduction Kinetic Model 

The phototransduction cascade model is built upon known enzymatic reactions, modified 
from an earlier publication [15]. The major improvement of our bump model is that it has 
been extrapolated to accommodate sequential photon absorptions to generate bump series; 
the previous models generated only single quantum bumps (not series). This property is 
essential for studying continuous light adaptation processes. Furthermore, despite the many 
model parameters, adaptation mechanisms in our model were regulated by two parameters 
only: ns  in Eq. 32 for bump shape and la in Eq. 33 for bump latency distribution. This model 
also has a more realistic representation of [Ca2+] dynamics. 

To account for the intrinsic randomness in the phototransduction reactions, where 
several molecular interactions occur at low numbers, the quantum bump model uses a 
stochastic simulation framework using the Gillespie algorithm [35]. The Gillespie algorithm is 
a rigorously derived Monte Carlo technique that is fully equivalent to the underlying Chemical 
Master Equation [35] (CME). It applies to a well-mixed chemical system (assumed here for 
simplicity), where all the reaction pathways are decomposed into M unidirectional 
elementary reaction steps Rμ. Each of these reaction steps is characterized by a 
momentarily-defined stochastic reaction constant, cμ, where cμδt (μ = 1, 2,  … , M) denotes 
the average probability that a particular combination of Rμ reactant molecules will react 
accordingly in the next infinitesimal time interval δt. If we define hμ as the total number of Rμ 
reactant pairs, aμδt = cμhμδt is the average probability that reaction Rμ will occur during δt. By 
considering a discrete infinitesimal time interval, (t, t+dt), during which 0 or 1 reaction occurs, 
dt and Rμ can be determined independently. When Rμ is chosen, the state vector X is 
updated with a state transition vector, Vμ. This procedure iterates until a termination criterion 
is satisfied; for example, if the current simulation time, t, is larger than a preset value. 



Following this framework, we will first describe the bump kinetics and then define the 
key parameters. The molecules, which are few in each microvillus, are counted, otherwise, 
we use concentrations (these two metrics are related by the microvillus volume V. In the 
following equations or reactions, X denotes the number of molecules, X* denotes to the 
active state of X, and XT denotes the total number of corresponding molecules/channels 
inside a single microvillus; [X] denotes the concentration, [X]i denotes intracellular 
concentration, [X]o denotes the extracellular concentration. Rates of activation are 
generically denoted by κ and rates of deactivation denoted by γ.  Positive and negative 
feedbacks are denoted by fp and fn, respectively and the local feedback strength parameter 
is denoted by h. Since spontaneous bumps are very rare, we assume that no reactions 
occur in the dark adapted state. 

The signaling pathway is decomposed into a set of unidirectional reactions, each of which 
contains only unimolecular or bimolecular reactants: 

 

                               
1* cM    R1 

                              2* * *cM G M G     R2 

                              3* *cG PLC PLC    R3 

                              4* * *cG PLC G GDP PLC    R4 

                              5cG GDP G    R5 

                             6* * *cPLC D PLC    R6 

                              7* cPLC PLC G GDP    R7 

                               8* cD    R8 

                                  92 * *cD T T    R9 

                                  10* cT T   R10 

                                 112 *cCa CaM C     R11 

                             12 2* cC Ca CaM    R12 

  

Since the light stimulus is already calibrated as the number of absorbed photons, photon 
activated rhodopsin (metarhodopsin, M*) is incremented by 1 if one photon is absorbed in a 
microvillus. In the unidirectional reactions, R1 denotes the inactivation of metarhodopsin (M*) 
by arrestin binding;   may indicate any reaction product, whose kinetics are not modeled. 
G-proteins can exist in multiple states. For simplicity, we only model the cycle through three 
states, GαGβγGDP (G),  GαGTP (G*) and GαGTP-PLC (PLC*). R2 represents the activation of 
G into G* by M*. G* binds to PLC and becomes an active G-protein-PLC complex (PLC*) in 
reaction R3. Reactions R4 and R5 represent the recycling process of G-proteins. R4 is the 
conversion from GαGTP to GαGDP by GTPase activity of G*, supposedly catalyzed by PLC*; 
GαGDP then rebinds to Gβγ before it can be reactivated (R5). PLC* hydrolyses PIP2 into DAG 
and IP3, generating the unknown excitation messengers for TRP/TRPL channels.  Because 
of this ambiguity in the molecular mechanisms, we model in R6 directly from PLC* to the 
supposed excitation messenger D* (i.e. DAG). D* excites TRP/TRPL channels T to their 
open states (T*) in reaction R9 and is degraded in reaction R8. Reaction R10 represents the 
process of closing the open TRP/TRPL channels. Reaction R11 represents the binding of 
Ca2+, which enters the microvillus through the open TRP/TRPL channels, to Calmodulin C*. 
Reaction R12 represents the release of Ca2+ from Calmodulin. The reaction R11 is a 
simplified 1st-order representation of the Ca2+ binding process, where in reality, 4 calcium 

ions bind to CaM to form C*. Ca2+ bound Calmodulin constitutes the feedback intermediate 



for regulating the reactions R1  ─ R10.  

In these elementary reactions, M* constitutes the activated metarhodopsin that has 
absorbed a photon and T* constitutes the output for the phototransduction cascade. Under 
voltage-clamped condition, the light induced current is calculated from: 

 

     * *in TI I T        

 (11) 

where IT* denotes the average single channel current conducted by an open TRP/TRPL 
channel. 

 

Because we assume that apart from Ca2+ none of the molecular components can enter or 
leave the microvillus, the following mass balance equations hold: 

  

TTTT *   (12) 

 TCCCaM  *   (13) 

 TPLCPLCPLC *   (14) 

 TGPLCGGGDPG  ***   (15) 

 

Using these mass balance equations the number of state variables can be reduced. Hence, 
the state vector is defined as: 

 

  **;*;*;*;;*; TCDPLCGGMX      (16) 

 

Ideally, Ca2+ should be included as one of the state variables. However, because Ca2+ 

changes up to 1,000-fold during a bump, its dynamics was approximated by a deterministic 
approach to save computational time. Hence, it was not included in the state vector (Eq. 16). 
How the Ca2+ dynamics was modeled is explained further down below. 

 

According  to R1-R12, the state transition matrix is defined as: 

 

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 2 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1 0 0
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V               (17) 

 

We can further derive the number of reactant pairs for each reaction: 
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The stochastic reaction constant vector 1 12c , is calculated from: 
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 (29) 

                                               12 Rc K    (30) 

 

where *DK is a normalization constant from *D  to TRP/TRPL, UK  and RK  are rate 

constants for Ca2+ binding and release to/from Calmodulin. 11c  is scaled from UK  by 

a factor 2V , because the deterministic model for Ca2+
 dynamics is described in terms of 

concentrations, instead of number of molecules  (Eq. 35).  

Positive feedback  fp  is formulated as a Hill function of  [Ca2+]i inside a microvillus: 
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Where pK  denotes the dissociation constant, i.e., [Ca2+]i that provides half occupancy of 

Ca2+ binding sites for the channels. pm  is the Hill coefficient, describing the cooperativity of 

Ca2+ in exciting the channels.  

Negative feedback  fn  is formulated as proportional to a Hill function of [C*]
i
: 
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where sn denotes a global negative feedback strength parameter. This is one of the most 

important parameters in our model; it is the only parameter that is used to regulate the bump 
shape in our simulations (Figure S3B), whereas all the other kinetic parameters are fixed. 

nK  denotes the dissociation constant and nm  denotes the Hill coefficient for [C*]
i . In reality, 

the affinity of [C*]
i  might vary for different feedback targets, leading to different parameter 

values for nK  and nm . However, for simplicity, we assume that the whole pool of available 

C* binding sites have the same affinity properties and local feedback strengths are 
parameterized by *h . This simplification provides a practical initial approximation, in absence 

of more complete mechanistic knowledge concerning the different underlying processes. 
The parameters ( * , *  and *h  , etc) are listed in Table 1.  

With the definitions of V, c  and h , the time increment dt, during which the next 
reaction Rμ reacts, is determined as: 
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where r1 denotes a uniformly distributed random number. as denotes the dot product 

between c and h (
1

M

sa c h


 






  ). Apart from the parameter ns in Eq. 32, la (or latency width-

regulator) is the only other critically important parameter in our model, affecting the latency 
distribution (Figure S3F). Rμ can be chosen in a way so that Eq. 34 satisfies: 
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where r2 is a uniformly distributed random number, and av is a product between cv and hv. 

 

 

 

Calcium Dynamics 

Ca2+ is an extremely important feedback signal in the phototransduction cascade.  However, 
because of the vast number of calcium ions involved, the computation is too time-consuming 
to simulate via Gillespie algorithm. To streamline computations, we adopted the use of  
hybrid techniques [36-40], where Ca2+ dynamics was simulated by deterministic methods: 
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Eq. 35 models Ca2+ dynamics as a balance between net Ca2+ influx (first term), Ca2+ uptake 
by calcium buffer (second term) and Ca2+ diffusion to the cell body. V denotes the microvillus 
volume, F denotes the Faraday constant. n denotes the number of Calmodulin Ca2+ binding 
sites. 1/KCa denotes Ca2+ diffusion time constant. ICa,net  denotes the net Ca2+ influx (pA), 
which is a balance between Ca2+ influx, ICa and Ca2+ extrusion through Na+/Ca2+ exchanger, 
2INaCa: 

 

 NaCaCanetCa III 2,  ,   

(36) 

 

where ICa is estimated to constitute 40% of Iin. INaCa is calculated from Eq. 37, which is a 
simplified format of the Na+/Ca2+ exchanger model [41], given that the extracellular ionic 
concentrations are fixed and the cell is voltage clamped: 
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where KNaCa denotes scaling factors; Vm denotes the transmembrane potential in Volts, 
approximated by resting potential (-70 mV); R denotes the gas constant and T denotes the 
absolute temperature.  

Consistent with R11─R12,  
[ *]id C

dt
 is defined as: 
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(38) 

 

 (Recall: UK  and RK  are the rate constants for Ca2+ uptake and release, respectively). 

To update Ca2+ quantities in the stochastic simulation framework, Ca2+ dynamics are 
assumed to be so fast that the quantities can be approximated by the steady-state values. 
Hence, at each time point, based on Eq. 35, Ca2+ is calculated from: 
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(39) 

Substituting Eq. 37 and Eq. 38 into Eq. 39, we obtain the steady-state 2
ssCa   as: 
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where 2
1([ ] ,[ ] )i of Na Ca   is defined as: 
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and  2 ( ,[ ] )m of V Na
 is defined as: 
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Simulating Phototransduction Model 

A key new feature of our stochastic bump model is that it has been extended to 
accommodate complex time series of photon inputs. The idea is to stop the Gillespie 
algorithm and update the molecule numbers when a new photon input arrives.    

The simulation procedure is as depicted in Figure S1C: 

1. Initialize X0, V, h, c, a, tend, Tph, i=1, where X0 is the initial state vector, V  is the state 
transfer matrix, h is the reactant pair vector, c is the stochastic reaction constant 
vector, a is the reaction propensity vector, tend is the termination simulation time, Tph 
is a vector recording the time point when there is photon stimuli, and  is iteration 
index for Tph. NRh is the number of photon activated rhodopsins; here, the 4th element 
(X4) of the state vector, V.  

2. Generate two uniformly distributed random numbers: r1 and r2. 

3. Decide the time increment for next reaction: 1

1
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dt r
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4. If  t+dt>Tph(i), then let t =Tph(i), i = i+1, NRh = NRh + Nph(t), otherwise  let t = t+dt. 

5. Select Rµ that reacts during dt. Rµ is chosen so that  
1

2
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v s v
v v

a r a a
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    satisfied.  

6. Update state vector X = X+Vμ, and update h, c and a accordingly. 

7. Update Ca2+ dynamics according to Eq. 39-42 

8. If  t > tend, then stop simulation and output X(t), otherwise go back to 2.  

Simulations of this extended bump model clarify why a single microvillus can only 
produce one bump at a time, regardless of its photon input (detailed explanations in the main 
text). Furthermore, the simulations also demonstrate how bumps adapt in a single 
microvillus, depending on its memory state of the photon input history. Importantly, the 
simulated bump series could be quantified by four bump parameters, namely: bump 
waveform (i.e. its amplitude and duration), latency distribution and refractory period 
distribution (Figure S2A). These bump parameters have great impact on the shape of the 
macroscopic LIC, whereas the model simulation enables an insightful link between the 
microscopic bump parameters and the macroscopic responses. 

 

(iii) Integration of Light-Induced Current (LIC) 

Role of Bump Parameters on Macroscopic Response 

Individual microvilli only produce one bump at a time and the macroscopic current of the 
rhabdomere is integrated from the response of up to 30,000 microvilli. Although it is still 
unclear how different microvilli cooperate in producing LIC, we assume that their 



phototransduction cascades are independent and the macroscopic LIC represents the 
summation of bumps (Eq. 43). This assumption is valid in dim to medium light conditions, 
where experimentally obtained bump statistics indicate one-to-one photons-to-bumps 
relationship [4].  
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(43) 

Given this assumption, how do the bump parameters affect the macroscopic response? To 
obtain better understanding of the bump parameters’ interdependency, we also built a 
simplified bump integration model, which provided us quick information how the parameters 
shaped the macroscopic responses. For example, with LIC representing the integration of 
30,000 ‘mock’ bump series, we could examine the shape changes in LIC when only a single 
bump parameter was varied at a time. 

Here, ‘mock’ bump series were not obtained through the phototransduction cascade model 
but instead these were generated separately, following several simple assumptions: each 
bump had a fixed shape, approximated by the gamma-function (Eq.34) [5]; the bumps were 
generated after a predetermined latency (stochastic or of prefixed value); no bumps were 
allowed to emerge in the middle of an ongoing bump response or during its refractory period; 
the refractory periods had either fixed values or these were generated for predefined 
distributions; the macroscopic response summed all bump series. In the simulations, three 
bump parameters were fixed, while the fourth one was changed to investigate its role.  
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where A, p, τ denote free parameters. We varied the bump amplitude with A and the bump 
duration with τ. 

We considered responses to 2 s uniform square bright light pulse (3x105 photon/s), 
and to 1-2 s naturalistic stimuli. In both cases, the photon input to each microvillus was 
generated by the random-photon-absorption model. 

How the mock simulations were done in key Figures: 

The simulations using light steps indicated that: 

1. The amplitude of the macroscopic LIC is determined by the bump shape; that is by 
the bump amplitude and duration. Both peak and plateau amplitudes increase 
proportionally with the bump amplitude, but sub-linearly with the bump duration.  

2. The bump shape contributes the most in determining the LIC amplitude.  

3. The transient width of LIC is determined by the bump latency (distribution) (Figure 
S2B). 

4. The plateau level can be reduced by prolonging the refractory period, but long 
refractory periods induce oscillation. 

5. Stochasticity in latency and refractory period benefits coding by expanding the input 
range and by reducing oscillations (Figure 5B). 

 

The simulations using naturalistic stimuli indicated that:  

6. Broadening the bumps (Figures S4E) or their latency distribution (Figures S4F) 
increased the low-pass filtering of the macroscopic responses,  



7. Broadening the refractory period distribution had relatively little impact on a 
photoreceptor’s encoding (Figures S4G). This is because naturalistic stimuli (of 1/f 
statistics) contain many dark or dim periods, which enable a large fraction of used 
microvilli to recover for the next bright light pattern. Thus, in comparison to light pulses, it 
is very difficult to saturate a system with naturalistic stimuli, which has over 30,000 
independently operating microvilli (Figure 5D). 

8. By shortening the refractory period, the availability of microvilli increases. 

9. Stochasticity of the refractory period has relatively little influence on the overall 
response waveforms to naturalistic stimuli (Figure S4G), but it whitens the utilization of 
both the light current range and microvilli (Figure 5C) providing efficient usage of them. 

 

Mock-Simulations (Large Bumps vs. Small Bumps) in Figures S4A-D. The following 
procedures and assumptions were used when generating bump series by ‘mock’ 
simulations: (a) each bump had a fixed shape; the large bump was the average of all bumps 
in the real stochastic simulation at dim light condition and the small bump was the average of 
all the bumps at bright light condition. (b) The bumps were generated after a predetermined 
stochastic latency, which followed the same latency distribution. (c) No bumps were allowed 
to emerge in the middle of an ongoing bump response, or during its refractory period. (d) 
The refractory periods were generated for the same predefined distribution, which was the 
refractory period distribution obtained from real stochastic simulations at dim light condition. 
(e) The macroscopic response was generated by summing all bump series.  

 

Decorrelating Mock-Simulations for Small Bumps in Figure 5A and Large Bumps in Figure 
5A. The amplitude and duration distributions of bumps to dim and bright naturalistic 
stimulation were first obtained from the respective stochastic simulations. In ‘mock’ 
simulations, the bumps’ amplitudes and durations were randomly generated according to 
these distributions (for dim and bright simulations separately). This decorrelation added 
noise to the simulations (Figure S4I). Latencies and refractory periods were generated 
according to their own distributions, as obtained from the real stochastic simulation. The 
macroscopic response was generated by summing all bump series. 

 

Fixed Refractory Period Mock-Simulations in Figures 5B-C. (a) All bump parameters and 
their corresponding distributions were predefined and were obtained from real stochastic 
simulations at bright light condition. (b) Each bump had a fixed shape, the average of all 
bumps. (c) The bumps were generated after the predetermined stochastic latency. (d) No 
bumps were allowed to emerge in the middle of an ongoing bump response or during its 
refractory period. (e) The stochastic refractory period distribution was obtained from the real 
stochastic simulation at bright light condition, while the fixed refractory period was set be 121 
ms, which is the refractory period at the peak of the distribution. (e) The macroscopic 
response was generated by summing all bump series. 

 

Model Parameter Adjustments 

The bump waveform was regulated by a single parameter, ns; this value was fixed for each 
simulation (and was not changed during the simulation). Similarly, the bump latency 
distribution was regulated by another single parameter, la, which was fixed for each 
simulation (and was not changed during the simulation). In extensive test simulations, we 
found that ns affects mostly the bump shape (Figures S3B-D), whereas la affects mostly the 
bump latency (Figure S3E-G). Both of these parameters have little effect on the bump 
refractory period when the bump statistics were within the physiological range for Drosophila 
(Figures S3D and S3G).  

 

 



(iv) HH Cell-Body Model  

Drosophila R1-R6 Photoreceptor Membrane Model 

To relate LICs to voltage responses, we adopted a Hodgkin-Huxley (HH) type photoreceptor 
cell membrane model, which incorporates voltage-gated fast inactivating Shaker and slow 
delayed rectifier, Shab, K+ conductances [42, 43], and K+ and Cl- leaks. It also includes a 
slowly activating, non-inactivating voltage-gated K+ conductances and the “window current” 
representing partial failure of Shaker channel inactivation (-11%). Further modulation of 
Shab channels, which are probably located on the microvillar plasma-membrane, via 
phosphoinositide depletion was not modelled [44]. The model also ignored the fast delayed 
rectifier (Shal current). As in earlier studies [1, 2], the conductance for Cl- leak was used to 
regulate the resting potential. However, the light-dependent conductance is not included 
here, because the phototransduction cascade model provides the functional equivalence to 
this conductance. The equivalent electrical circuit of the cell body is shown in Figure S1D. 

 

Blowfly and Killerfly R1-R6 Photoreceptor Membrane Models 

Unlike Drosophila photoreceptors, blowfly (Calliphora vicina) outer photoreceptors do not 
have fast inactivating Shaker conductances [45]. So we exclude gksh from the model (Figure 
S1D) and regulate the other model parameters to approximate the voltage output of real 
blowfly photoreceptor membrane (Figure S5A). Although we do not know the exact 
potassium-channel composition in the Killerfly (Coenosia attenuata) photoreceptor 
membrane (Figure S5B), based on its voltage rectification to injected current-pulses [24], we 
assumed that its ion-channel composition resembles that of the blowfly. This view is 
supported by the general observation that photoreceptors of fast-flying flies seems to lack a 
fast inactivating Shaker-like membrane conductance [46]. Importantly, we further point out 
that in all insect photoreceptor membranes, which we have studied systematically both in 
dark- and light adapted conditions [5, 6, 24, 25, 47], the band-width of the cell-body 
membrane has always been much broader than that of the corresponding phototransduction 
cascades. Therefore, the photoreceptor membrane acts effectively as an adjustable scalar 
during naturalistic light stimulation, not influencing the transmitted information [9, 48]. By 
injecting the simulated macroscopic LIC to the cell body models of blowfly and killerfly 
photoreceptor membranes, we obtained the corresponding voltage responses, as shown in 
Figure 6 in the main paper. 

 

(v) Global Feedback Mechanisms 

To replicate the effect of slow global feedbacks, such as intracellular accumulation or 
diffusion of Ca2+, we implemented a global feedback strength parameter in the 
phototransduction cascade model (ns in Eq. 32). In the simplest case, by changing ns 
exponentially (Eq. 45), the model reproduced the slow light adaptation trends (exponential 
decay to plateau) in the LIC responses to light pulses (Figure 2F).  
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where ns0 denotes the initial condition for ns  and 0 ss nn A is the value for ns at t , 
sn  

denotes the time constant of ns dynamics. These parameters for ns at different light level are 
listed in Table.1. Since ns impacts mostly bump shape, we conclude that the slow light 
adaptation is mainly caused by bump adaptation.  

In simulations for Figures 3, 4 and 6 in the main paper, ns parameter included no 
trend adjustment. This is because the output of the real photoreceptors, collected for the 
information analysis, were fully adapted to the repeated naturalistic input statistics (typically 
>20 s after the stimulus onset). Thus, these photoreceptors were operating in a steady-state 



mode where slow light-adaptation played little role in their output dynamics. Notice that 
because of the abundance of microvilli, after the photoreceptor has adapted to a relative 
steady-state, its refractory period (distribution) remains brief enough to have very little (or no) 
effect on dynamic encoding of changing naturalistic light patterns (Figures S4G). Therefore, 
by fixing the bump shape and latency distribution in the stochastic models of different 
photoreceptors (Drosophila, Calliphora or Coenosia) to match those of the experimentally 
measured values (see Bump and Latency Distribution Analysis, above) at each mean 
light intensity level in real cells was sufficient to generate realistic voltage responses to 
naturalistic light intensity changes (Figures 3, 4 and 6). In other words, the stochastic model 
operated normally by dynamically adjusting the ratio of the used/available microvilli. 

Owing to our model structure, the voltage regulation of TRP/TRPL channels’ driving 
force was also implemented as a global feedback mechanism. This procedure allowed us to 
characterise the interplay between the light-sensitive and light-insensitive membrane, when 
the photoreceptor was encoding vast changes in light intensity.  

Specifically, we modified  Iin formulation from Eq. 11 to Eq. 46: 

 

                                              ( * )( )( )N N
in TRP rev mI T g TRP V       

(46) 

 

where T*N denotes the number of opened TRP/TRPL channels in the Nth microvillus, gTRP is 
the single TRP channel conductance, TRPrev is TRP channel reversal potential and mV   is 

the membrane voltage.  gTRP can be formulated according to Eq. 47. 

                                             
1

8
0

rev m
TRP

if TRP V
g

otherwise


  

     
 

(47) 

 

In this way, TRP/TRPL channels are either fully closed or fully opened, with a single channel 
conductance of 8 pS at open state. TRPrev is set to 0 mV[34]. 

From Eq. 46, as membrane voltage ( mV ) increases, the bumps ( N
inI ) shrinks 

accordingly, reducing the overall macroscopic LIC response (Eq. 43). Since the 
phototransduction cascades and the membrane are modeled separately in two 
compartments, the cell membrane voltage ( mV ) is obtained by injecting LIC into HH-type cell 

body model: 

 

                                                        ( )mV HH LIC        

(48) 

  

where HH denotes the cell membrane model as a function. 

The iteration process was conducted between these two model compartments (Eq.43 
and Eq. 43-47) to obtain realistic macroscopic LICs and voltage responses. Thus, the 

calculation of N
inI  in Eq.46 requires membrane potential feedback, mV , which is initialized at 

the resting potential (-70 mV). As a result, N
inI  in every microvillus is larger than the true 

value, and hence LIC0 obtained in Eq. 43 is larger than the true value of LIC. Accordingly, 
LIC0 charges a too large voltage response 1mV . To obtain a more realistic LIC, 1mV  is fed 

back to Eq. 46 (Figure 3C); but as a result, LIC1 can be smaller than the true value (i.e. the 
obtained values oscillate). Hence, an iterative simulation procedure between rhabdomere 



and the cell body is conducted to acquire the converged LIC and mV . In this process, it is 

assumed that the voltage feedback only affects the amount of current influx through the 
opened TRP/TRPL channels, but not the dynamics of the phototransduction; T*N

  is not 
changing in each microvillus.  

The simulated macroscopic LICs with and without the global voltage feedback are 
compared in Figure 3C. Thus, voltage acts as a global gain regulator, making all microvilli 
dependent on each other’s activity. The brighter the stimuli, the more apparent this effect is.  

 

 

Simulating Encoding in Steady-State Adapted Conditions 

In Figures 4 and 6, we study encoding of naturalistic light contrasts at “steady-state” light-
adapted conditions, i.e. when the slow bump adaptation to the given average light level has 
more-or-less settled out. To approximate this situation by the simulations, our naturalistic 
stimulus consisted of two identical one-second-long light intensity series patterns (cf. Figure 
5D; NS, each having 10,000 points) taken from the van Hateren natural image collection 
[31]; the second pattern continued directly after the first one without any delay. We then 
simulated 100 responses of the full stochastic model to this stimulus. To eliminate the slow 
adaptive trend in the analyzed output, we typically only used the simulated responses to the 
second NS pattern (1001:2000 ms). Nonetheless, in Figure 5D (inset), we show the 
combined stimulus and the resulting microvilli usage for different brightness of NS over the 
whole stimulus duration. 

The simulations clarify that the rate of information transfer of macroscopic voltage 
responses to naturalistic stimuli approaches a constant rate at bright light levels. There are 
three reasons for this. First, proportionally more photons hit rhodopsin-molecules in the 
microvilli during their refractory period, i.e. when they are unavailable for generating new 
bumps; thus, quantum efficiency drops. Concomitantly, the dynamic equilibrium between 
used and available microvilli (unused and recovering from their previous bumps; see also 
Negative feedback and refractory period, below); approaches a constant (maximum) 
bump production rate (sample rate) (Figures 5B and 7D). Second, the global calcium and 
voltage feedbacks cannot make bumps any smaller and briefer with increasing brightness 
(cf. Figures S4E and 7A). Third, the bump latency distribution remains practically invariable 
in different light-adaptation states (Figure 3J). Therefore, when the sample rate and the 
filtering properties of the integrated macroscopic voltage responses settle (at intensities >105 
photons/s in Drosophila R1-R6 photoreceptors), allocation of visual information in the 
photoreceptor’s amplitude and frequency range becomes nearly invariable. Accordingly, the 
real recorded voltage responses of Drosophila R1-R6 photoreceptors in Figures 4D and 6A 
are very similar - and so are their rates of information transfer (see also [24, 49, 50])-, 
although we used much brighter ultra-bright LED stimulation in the latter case. As long as 
the microvilli usage is over 50% (Figure 5D), the rate of information transfer of the voltage 
responses become similar; and based on the ultra-bright naturalistic stimulation in these 
experiments, this is so even at very bright intensities. 

Notice also that adaptation to brightening light intensity reduces the average bump 
duration in fly photoreceptors (Figure 3I), and that the estimated light-adapted bump latency 
distributions of Calliphora and Coenosia photoreceptors are much briefer than that of 
Drosophila (Figure 6A-C). In their respective photoreceptor models, when using 
physiological plausible range of the global bump parameters, ns and la (cf. Figure S3B-G), 
these changes have an effect of shortening the bump refractory period distribution (Figure 
6A-C; yellow). Therefore, the bump production rates (sample rates) of Calliphora and 
Coenosia microvilli during very bright simulation are higher than those of Drosophila for the 
same light stimuli. Naturally, the very brief bumps and latency distributions of Calliphora and 
Coenosia photoreceptors improve the capture of high-frequency information in 1/f stimuli; i.e. 
this information cannot be encoded by bumps and latencies of Drosophila photoreceptors 
that are slower than these high-frequency inputs themselves. 



(iv) Highlighted Modeling Considerations 

Negative Feedback and Refractory Period 

Note that the time window for the general negative feedback parameter (calcium-calmodulin 
complex) [C*]

i decay phase is much longer than the refractory period, which is realistic and 

can be explained by two reasons. First, the negative feedback (fn in Eq. 22) would have 
shorter decay phases as a Hill function of [C*]

i
. Second, a bump can be generated without 

C* decaying to zero, as illustrated in the 3rd bump in Figure 1C. This is because the 
refractory period represents a balance between the positive and negative feedbacks, where 
the positive feedbacks can outgrow the negative feedbacks in the middle of [C*]

i decay 

process. In the models, Hill function was used for simplicity; assuming that the feedback 
functioned through a binding process, as there are Ca2+ and calmodulin binding sites on the 
ion channels. 

 

Defining the Number of Activated Microvilli and Their Usage 

To illustrate the role of stochastic sampling by microvilli, the total number of 
responding/activated microvilli (Nvilli) was counted in 1 ms time-bins; i.e., for 

 if TRP*m
>0, Nvilli(t) = Nvilli(t)+1 (e.g. Figure 2). The temporal activation 

profile of Nvilli matches well the photoreceptor voltage responses to naturalistic stimuli. To 
illustrate the role of stochastic refractory periods in the adaptive sampling, we further 
counted the number of used microvilli, i.e., microvilli that are either responding or refractory. 
This counting was done by the simple bump integration model, where bump series were 
generated according to several simple assumptions (details in section iii, page 20).   

 

Energy Costs Related to Adaptive Information Sampling 

By modeling photoreceptors of different fly species and comparing their outputs to those of 
their real counterparts in vivo, we showed why and how their structure and biophysical 
makeup are intrinsically linked to the neural signaling they carry out. This new understanding 
of the interdependency between adaptive sampling of visual information and photoreceptor 
structure explains readily why and how differently shaped photoreceptors of different fly 
species match the visual requirements of their lifestyle. A photoreceptor’s maximum 
information transfer rate cannot be increased beyond its structural limits, hardwired in the 
maximum number microvilli and in their maximum bump production rate. Therefore, insect 
photoreceptors with the most and fastest microvilli in principle should provide the best vision. 
However, this comes at a cost: more microvilli also mean higher capacitance, and hence 
potentially slower membrane time constant, which can only be overcome by larger 
conductances, ultimately consuming more ATP [51, 52]. 
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