EPR/ENDOR, Mössbauer, and Quantum Chemical Investigation of Di-iron Complexes Mimicking the Active Oxidized State of [FeFe] Hydrogenase.

Alexey Silakov^{#*†}, Matthew T. Olsen⁺, Stephen Sproules^{#§}, Eduard J. Reijerse[#],

Thomas B. Rauchfuss⁺, Wolfgang Lubitz^{#*}

[#] Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim a.d. Ruhr, 45470, Germany [§] School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

⁺ Department of Chemistry, University of Illinois, A328 Chemical & Life Sciences Lab, 600 South Mathews Avenue, Urbana, IL 61801, USA

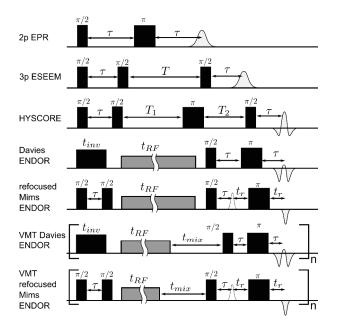
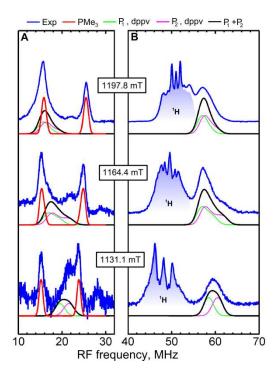
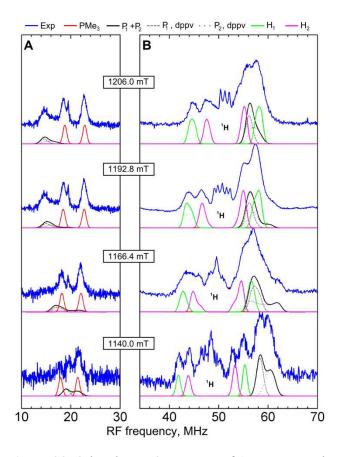
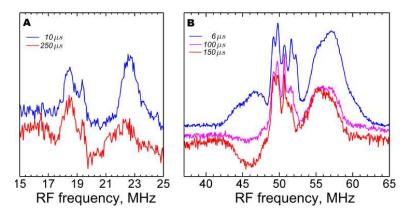
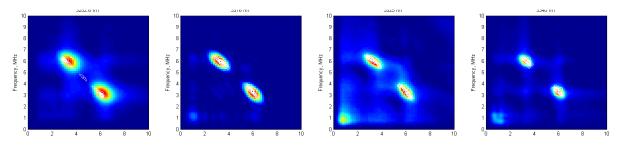
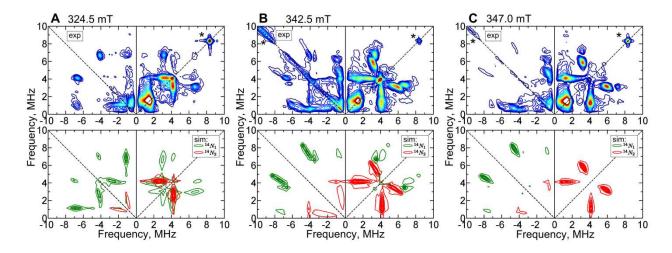
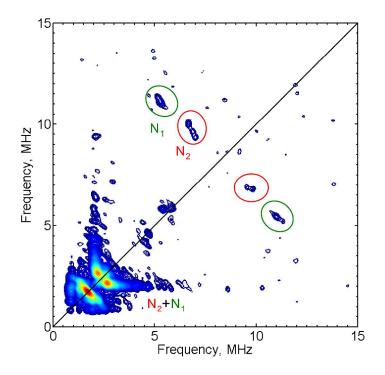




Figure S1. Pulse EPR sequences used in this study.


In the VMT ENDOR technique the delay time between the RF pulse and the detection sequence (t_{mix}) is increased (see Figure S1), which skews the profile of the ENDOR doublet due to a difference in nuclear and electronic T₁ relaxation rates. In some cases a complete polarization of the ENDOR signal can be observed. VMT ENDOR experiments can be performed using both Mims and Davies experiments. The effect is best observed at low temperatures and high MW frequencies, as it is governed by the Boltzmann polarization factor $\varepsilon = hv/kT$. The "VMT effect" can also be enhanced by using linear scanning instead of stochastic data acquisition with *n* more than10 shots per point ¹, although this enhancement comes at the cost of increasing baseline artifacts. To observe the VMT effect slow electron-nuclear cross-relaxation (T_x) and nuclear spinlattice relaxations (T_{1n}) with respect to the longitudinal electron relaxation times (T_{1e}) are required. For the current system $T_{1e} \approx 50 \ \mu s$ at 25K is estimated. As the anisotropy of the observed ³¹P(PMe₃) HF coupling is rather small (see Table 1), we expect very slow cross-relaxation i.e. $T_x >> T_{1e}$. Indeed, even at this relatively high temperature (25K), we have observed an almost completely polarized ³¹P Q-band ENDOR spectrum when t_{mix} is above 100 µs (see Figure 4 in the main text).


Figure S2. Q-band Davies ENDOR spectra (blue) of **1edt** for two different RF regions (**A**, **B**) measured at the indicated field positions in the EPR spectrum at T = 20K. Simulations were performed using parameters from Table 1 (see legend above the graph). The ¹H ENDOR region is shaded blue for clarity. Experimental conditions: **A**, $t_{\text{RF}} = 35 \,\mu\text{s}$; $v_{\text{mw}} = 33.8708 \,\text{GHz}$; $t_{\text{inv}} = 200 \,\text{ns}$. **B**, $t_{\text{RF}} = 5.5 \,\mu\text{s}$; $v_{\text{mw}} = 33.8708 \,\text{GHz}$; $t_{\text{inv}} = 80 \,\text{ns}$.


Figure S3. Q-band ENDOR spectra of **1adt** measured at the indicated field positions at 20 K. Low frequency spectra (**A**) were recorded using the refocused Mims ENDOR sequence with $\tau = 108$ ns and $t(\pi/2) = 16$ ns, whereas the high frequency part (**B**) was recorded using Davies ENDOR, $t_{inv} = 44$ ns (suppressing matrix ¹H signals), $t(\pi/2) = 16$ ns, $\tau = 400$ ns. Simulations were performed using the HF coupling constants listed in Table 1 (see legend above the graph for the color coding).


FigureS4. Q-band variable mixing time (VMT) ENDOR measurements of **1adt** at the field position of maximum echo intensity (1192.0 mT) showing the effect of t_{mix} on the spectral profile. All spectra are normalized to the most prominent unchanged feature. Experimental conditions: **A**, refocused Mims ENDOR, T = 20 K; $t_{RF} = 45 \ \mu\text{s}$; $v_{mw} = 33.8761 \text{ GHz}$; $B_0 = 1192.0 \text{ mT}$; $\tau = 108 \text{ ns}$, SRT = 550 μs . **B**, Davies ENDOR, T = 25 K; $t_{RF} = 6 \ \mu\text{s}$; $v_{mw} = 33.8250 \text{ GHz}$; $B_0 = 1191.3 \text{ mT}$; $t_{inv} = 80 \text{ ns}$; SRT = 550 μs .

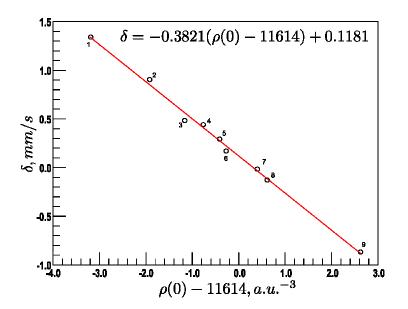

Figure S5. W-band HYSCORE spectra measured at various field positions. Overlaying white contours are the simulations accounting for one ⁵⁷Fe HF coupling (Fe₂, see Table 1).

Figure S6. X-band HYSCORE spectra of **1adt** (top), measured at the indicated field positions and corresponding simulations (bottom) accounting for two independent ¹⁴N signals that correspond to two isomeric forms of the amine group. Experimental parameters: T = 20 K; $v_{mw} = 9.720$ GHz; $t(\pi/2) = 8$ ns; $\tau = 86$ ns. For clarity the presented spectra are cropped to the low frequency range, neglecting the ¹H signals. Asterisks denote instrumental artifacts. Simulations include ³¹P(dppv) HF coupling constants in the orientation selection calculation.

Figure S7. Q-band HYSCORE spectrum of non-enriched **1adt** recorded at T = 25K. Experimental parameters: $B_0 = 1160 \text{ mT}$; $v_{mw} = 9.720 \text{ GHz}$; $t(\pi/2) = 12 \text{ ns}$; $\tau = 300 \text{ ns}$. Green and red circles indicate positions of double quantum transitions for N_1 and N_2 nuclei respectively.

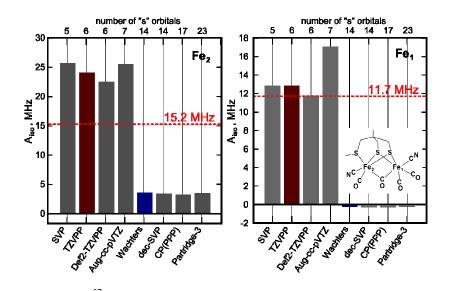
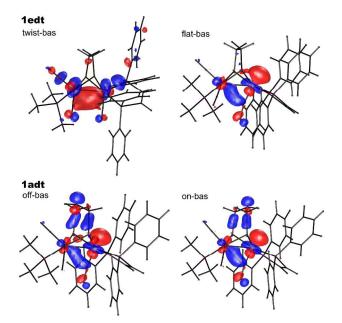

Figure S8. Correlation between experimentally measured isomeric shifts (δ) for various iron model complexes (see Table S1) and DFT calculated electron densities at the iron nucleus $\rho(0)$. A constant 11614 a.u.⁻³ is subtracted from $\rho(0)$ for convenience. Correlation between δ and $\rho(0)$ is approximated by a linear function, as denoted on the top of the plot.

Table S1. Electron densities at the nucleus $\rho(0)$ and experimental isomer shifts δ^{exp} for all investigated complexes calculated using the unrestricted B3LYP functional in concert with Wachters basis set on the irons and TZVPP on all other atoms. Geometries and experimental values for all but [Fe(I) diketiminate] were taken from the work by Römelt.² Experimental isomer shift value and starting crystallographic data for [Fe(I) diketiminate] were taken from the work of Stoian,³ prior to the calculation of Mössbauer parameters, the geometry was optimized on the BP86/TZVPP level.


Ν	Name	S	δ^{exp} , mm/s	$\rho(0), a.u.^{-3}$
1	$Fe(II)F_6^{4-}$	2	1.34	11610.8
2	Fe(II)Cl ₄ ²⁻	2	0.90	11612.1
3	$Fe(III)F_6^{3-}$	5/2	0.48	11612.8
4	Fe(I) Diketiminate	3/2	0.44	11613.2
5	$[Fe(III)Az]^+$	1/2	0.29	11613.6
6	Fe(IV)TMCO ²⁺	1	0.17	11613.7
7	Fe(II)CN ₆ ⁴⁻	0	-0.02	11614.4
8	Fe(III)CN ₆ ³⁻	1/2	-0.13	11614.6
9	$Fe(IV)O_4^{2-}$	1	-0.87	11616.6

Abbreviated BS Description names SVP Ahlrichs split valence basis set with one set of first polarization functions on all atoms including hydrogen⁴. Fe: 5s3p2d pattern {63311/531/41} dec-SVP Decontracted SVP⁴ Fe: 14s9p5d TZVPP Ahlrichs triple- ζ valence basis set with three sets of first polarization functions on all atoms including hydrogens. Fe: 6s4p3d1f pattern {842111/6311/411/1} Def2-TZVPP Balanced basis sets of triple- ζ valence⁵ Fe: 6s5p4d2f1g pattern {842111/63111/4111/11/1} aug-cc-pVTZ Augmented version of Dunning correlation consistent polarized triple- ζ basis set including diffuse functions.⁶ Fe : 7s6p4d2f1gpattern {19 19 19 19 19 19 1/15 15 15 15 15 1/7771/11/1} **Ross-ANO-TZV** Augmented Roos triple- ζ ANO Atomic Natural Orbital Basis Set⁷ Fe: 8s7p5d3f2g pattern {2121212121212121/1515151515151515/1010101010/666/44} Bonn-ANO-TZ3P Atomic Natural Orbital basis set with a contracted set of f-polarization functions on the heavy atoms. Bonn ANO basis sets are based on the gaussian primitives from the TZV basis of A. Schaefer, H. Horn and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992). [F. Neese, 2007, unpublished] Fe: 7s6p4d3f2g pattern {1919191818191/1414141414141/10101010/666/44} QZVP Ahlrichs quadruple- ζ basis set.⁴ Fe: 11s6p5d3f2g pattern {1141111111/951111/61111/111/11} Wachters Wachters basis set⁸ Fe: 8s6p4d2f pattern {6211111/331211/3111/21} CP(PPP) The ORCA basis set 'CoreProp'. This basis is based on the TurboMole DZ basis developed by Ahlrichs and coworkers and obtained from the basis set library under ftp.chemie.uni-karlsruhe.de/pub/basen Fe: 17s7p3d1f pattern {1111111111111113311111/311/1} Partridge-3 Large uncontracted basis set⁹ Fe: 23s16p8d

Table S2. Short description of the basis sets used for figure 12 and figure S8 including contraction patterns where applicable.

Figure S9. ⁵⁷Fe A_{iso} coupling constants of {2Fe3S} model compound as calculated using various basis sets for the irons in conjunction with the B3LYP functional and the TZVPP basis set on all the other atoms. The red dashed lines indicate the experimentally obtained values from the work of Silakov et al ¹⁰. Red and blue bars indicate TZVPP and Wachters basis sets respectively to enhance visual representation. In the insert (right) a schematic representation of the model is shown.

Figure S10. HOMO orbitals of selected isomers of **1edt** and **1adt** obtained from spin unrestricted B3LYP calculations using Wachters basis set for Fe atoms and TZVPP for all other atoms.

1edt	twist-ap	twist-bas	flat-ap	flat-bas	exp
Single point energy					
E^{B3LYP} , Eh	-5889.392017	-5889.391960	-5889.397913	-5889.401140	-
ΔE , kcal/mol	5.73	5.76	2.03	0.00	-
g-matrix					
g _x	2.0175	2.0280	2.0143	2.0142	2.009
g _v	2.1320	2.1261	2.0293	2.0320	2.028
g _z	2.1667	2.1666	2.0951	2.0935	2.139
$\frac{g_{iso}}{5^{7} Fe, Fe_{1}^{a)}}$	2.1054	2.1069	2.0462	2.0465	2.059
⁵⁷ Fe, Fe ₁ ^{a)}					
A _{iso} (MHz)	-0.55 (-5.03)	+0.97 (-3.46)	-4.59 (-6.77)	-4.74 (-7.05)	-8.30
A _{dip} (MHz)	+11.14 (+13.38)	+9.64 (+11.71)	+15.97 (+16.91)	+16.58 (+17.53)	+12.45
A _{rh}	+0.57 (+0.68)	+0.99 (+0.79)	+0.46 (+0.61)	+0.35 (+0.46)	+0.70
$\Delta E_Q (mm/s)^{c}$	+1.47	-1.17	-0.41	-0.49	-0.58
η	0.87	0.87	0.91	0.97	0.90
$\rho(0)$ (a.u. ⁻³)	11613.9141	11613.9519	11613.8685	11613.8898	
$\delta (mm/s)^{b}$	+0.15	+0.14	+0.17	+0.16	+0.20
S.p. (Loewdin)	0.7240	0.6643	0.9111	0.9460	
S.p. (Mulliken)	0.7448	0.7023	0.9740	1.0189	
⁵⁷ Fe, Fe ₂ ^{a)}					•
A _{iso} (MHz)	-0.57 (-2.65)	+0.55 (-1.48)	-2.25 (-2.39)	-1.99 (-2.08)	-1.60
A _{dip} (MHz)	+5.77 (+6.75)	+7.17 (+7.95)	+2.02(+2.01)	+1.43(+1.40)	+1.30
A _{rh}	+0.64 (+0.59)	+0.79 (+0.68)	+0.30 (+0.36)	+0.23 (+0.21)	+0.69
$\Delta E_Q (mm/s)^{c}$	+0.70	-0.59	+0.67	+0.80	+0.70
η	0.99	0.69	0.52	0.48	0.92
δ (mm/s) ^{b)}	-0.03	-0.01	+0.01	+0.01	+0.04
S.p. (Loewdin)	0.3711	0.4225	0.1043	0.0747	
S.p. (Mulliken)	0.3946	0.4178	0.1147	0.0797	
³¹ P(dppv)					
A _{iso} (MHz)	-66.85	-60.13	-85.17	-82.29	-77.30
A _{iso} (MHz)	-60.78	-58.69	-84.39	-85.70	-77.30
³¹ P(PMe3)					
A _{iso} (MHz)	+8.15	-40.22	+6.10	-11.91	-9.70

Table S3. Comparison of calculated spectroscopic parameters of 1edt with experimental da	ita.
--	------

 $\frac{|A_{iso} (MHz)|}{|A_{iso} (MHz)|} + 8.15 - 40.22 + 6.10 - 11.91 - 9.70$ ^{a)} HF tensors are parameterized as such: A = A_{iso}+A_{dip}[-1+A_{rh}, -1-A_{rh}, 2]. The values in brackets are obtained excluding second order spin-orbit coupling contribution.

^{b)} $\delta = 0.1181 - 0.3821$ ($\rho(0) - 11614$), see materials and methods for details.

 $^{\rm c)}$ As the asymmetry parameter is almost 100% the sign of ΔE_Q does not have a physical meaning

×				exp
	0.00 011	up ojj	0.00 0,0	•p
-5944.726416	-5944.730859	-5944.724231	-5944.73035	
2.79	0.00	4.16	0.32	
				L
				2.005
				2.031
				2.125
2.0464	2.0461	2.0440	2.0444	2.054
				1
	· /			
· · · ·	· · · ·	()	× /	
		. ,		
+0.34	+0.39	-0.39	-0.38	
0.53	0.13	0.76	0.68	
11613.8189	11613.7785	11613.8156	11613.8349	
+0.19	+0.20	+0.19	+0.18	
0.9003	0.9579	0.9356	0.9613	1
0.9772	1.0327	0.9959	1.0248	
-1.65 (-1.84)	-1.79 (-1.84)	-1.76 (-1.79)	-1.36 (-1.39)	
· ,	· · · ·	· /	· · · · ·	
0.1000	0.0000	0.0070	0.0112	
+3.92	+2.91	+0.59	+0.83	+4.00 +1.17
				+0.68 +1.17
				+0.51 + 0.0
				1.12 1.15
				0.20 0.0
0.07	5.07	5.67	0.11	0.20 0.0
-88 27	_83.85	-86.23	-82.08	-73.0
				-73.0 -75.3
72.01	-00.50	-00.22	-07.50	-10.0
+8.30	0.61	+0.50	6.67	-3.90
70.37	-9.01	79.39	-0.07	-3.90
12 (9	1 27	17.05	+ 4.05	19.20
				+8.30
				+13.50
				-
-1.32	-0.77	-1.07	-1.00	-
				ſ
-0.60	-0.41	-1.07	-0.92	-
	ap-on -5944.726416 2.79 2.0151 2.0323 2.0919 2.0464 -6.22 (-8.38) $+15.10$ (+16.01) $+0.74$ (+0.87) $+0.34$ 0.53 11613.8189 $+0.19$ 0.9003 0.9772 -1.65 (-1.84) $+1.76$ (+1.79) $+0.63$ (+0.75) $+0.83$ 0.40 11614.2319 $+0.03$ 0.0910 0.1058 $+3.92$ $+0.21$ $+0.34$ -1.24 0.09 -88.27 -92.01 $+8.39$ $+2.68$ $+1.95$ -1.30 -1.32	ap-onbas-on -5944.726416 2.79 -5944.730859 0.00 2.0151 2.0323 2.0304 	ap-onbas-onap-off-5944.726416-5944.730859-5944.7242312.790.004.162.01512.01462.01282.03232.03042.02712.09192.09332.09202.04642.04612.0440-6.22 (-8.38)-6.33 (-8.69)-6.99 (-9.13)+15.10 (+16.01)+16.04 (+17.00)+14.42 (+15.69)+0.74 (+0.87)+0.50 (+0.64)+0.89 (+0.96)+0.34+0.39-0.390.530.130.7611613.818911613.778511613.8156+0.19+0.20+0.190.90030.95790.93560.97721.03270.9959	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table S4. Comparison of calculated spectroscopic parameters of **1adt** with experimental data. S.p. = spin density. Note that signs of 14 N hyperfine coupling constants were not identified experimentally.

^{a)} HF tensors are parameterized as such: $A = A_{iso} + A_{dip}[-1 + A_{rh}, -1 - A_{rh}, 2]$. The values in brackets are obtained excluding second order spin-orbit coupling contribution.

^{b)} $\delta = 0.1181 - 0.3821$ ($\rho(0) - 11614$), see materials and methods for details.

c) For assignment of ¹H HFCs see Figure S11.

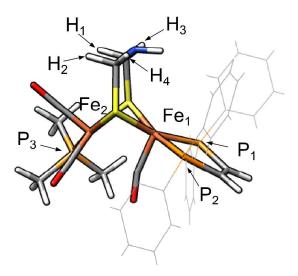


Figure S11. Nomenclature used in tables S3, S4 and tables 4,5 in the main text using *bas-on ladt* geometry as an example.

References

- 1. Doan, P. E. Combining steady-state and dynamic methods for determining absolute signs of hyperfine interactions: Pulsed ENDOR Saturation and Recovery (PESTRE). *Journal of Magnetic Resonance* **2011**, *208* (1), 76-86.
- Römelt, M.; Ye, S.; Neese, F. Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: meta-GGA and double-hybrid functionals. *Inorg. Chem* 2009, 48 (3), 784-785.
- Stoian, S. A.; Yu, Y.; Smith, J. M.; Holland, P. L.; Bominaar, E. L.; Münck, E. Mössbauer, Electron Paramagnetic Resonance, and Crystallographic Characterization of a High-Spin Fe(I) Diketiminate Complex with Orbital Degeneracy. *Inorg. Chem.* 2005, 44 (14), 4915-4922.
- 4. Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian-Basis Sets for Atoms Li to Kr. *Journal of Chemical Physics* **1992**, *97* (4), 2571-2577.
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 2005, 7 (18), 3297-3305.
- Balabanov, N. B.; Peterson, K. A. Systematically convergent basis sets for transition metals. I. Allelectron correlation consistent basis sets for the 3d elements Sc--Zn. *The Journal of Chemical Physics* 2005, *123* (6), 064107-064115.
- 7. Roos, B. O.; Lindh, R.; Malmqvist, P.-A.; Veryazov, V.; Widmark, P. O. New Relativistic ANO Basis Sets for Transition Metal Atoms. J. Phys. Chem. A 2005, 109 (29), 6575-6579.
- 8. Wachters, A. J. Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms. Journal of Chemical Physics 1970, 52 (3), 1033

- 9. Partridge, H. Near Hartree-Fock quality GTO basis sets for the first- and third-row atoms. *The Journal of Chemical Physics* **1989**, *90* (2), 1043-1047.
- Silakov, A.; Shaw, J. L.; Reijerse, E. J.; Lubitz, W. Advanced Electron Paramagnetic Resonance and Density Functional Theory Study of a {2Fe3S} Cluster Mimicking the Active Site of [FeFe] Hydrogenase. J Am Chem Soc 2010.