
S3 – Particle Filter Navigation Model 

 

In the following sections, we describe the operational details of the particle filter used in the simulations. In 

essence, a particle cloud is used to approximate a joint probability distribution of the current position and 

orientation (pose). As the simulated animal moves, noisy sensory information provides an approximation of 

self motion. Following each step, the pose distribution is updated according to the estimate of self motion, 

with some extra noise added. The latter accounts for the possibility of errors in the self motion estimate, so 

that at least some of the independently propagated particles correspond closely to the true pose of the 

simulated rat. Two pieces of information are used to refine the estimate of position i.e., reducing the spread 

of the particle cloud. The first is assumed knowledge of the arena geometry, which allows removal of 

particles which have been propagated to outside of the extent of the arena. The second is wall contact, which 

allows the remaining particles to be ranked in terms of how well they would account for the current wall 

contact information (distance and angle relative to nearest wall) given the known arena geometry. The size 

of the particle cloud is kept constant by removing particles which do not account for sensory data well, and 

cloning the remainder. 

 

We used a particle filter in preference to a neural navigation model for several reasons. First and foremost, 

to investigate theoretical issues in the accumulation of error, a particle filter model enables explicit 

incorporation of exact noise and process parameters. This allows moment by moment access to the error 

distribution of the ideal position estimate. Secondly, the straightforward operation of a particle filter 

provides a simple means of boundary contact resetting. Boundary contact information can be used to 

recalibrate or reset the particle filter’s state representation through simple particle culling or reweighting. 

Neural models such as the RatSLAM navigation model have complex, interacting system dynamics that 

make setting motion parameters difficult and would require the development of an arbitrary neural unit 

reactivation scheme [33].  

 

The particle filter approximates the Bayes-optimal distributed conjunctive position and orientation (pose) 

estimate of the head. The inputs consist of  

1) an erroneous HD system which provides approximate angular displacement information, as 

described (Text S2); 

2) an erroneous step size estimate with error ( )2
l~ 0,l Nε σ  where 1.4lσ = cm matching the true 

variability in step size (Text S1); 

3) an estimate of distance and direction relative to the nearest wall whenever the rat has to make a 

systematic turn to avoid wall collision. The angular and linear errors (e.g., from whisking) were 

assumed to be independent of, but the same magnitude as, those of the PI system per step. 

 



Unless otherwise specified, a cloud of 104 particles was used to approximate the head pose. Each particle 

was propagated as an independent correlated random walk with linear displacement ( )2~ ,MC ll N l σ  and 

angular displacement ( 2~ ,MC N )δθ α σΔ , where mean angular turn and step length were the erroneous HD 

and step size estimates described earlier. In simple terms, the particles have random jitter which simulates a 

range of possible but unknown errors in angular and linear displacement estimates. This process is 

analogous to a propagation of the probabilistic estimate of head pose according to the cumulative error rates 

of iPI. The particle cloud may also be considered as an approximation of the prior probability distribution of 

pose when either arena memory or wall contact information is to be combined. 

 

Unless otherwise specified, it was assumed that the arena boundary size and shape were precisely known. 

This information was used to update the pose distribution by modifying the particle cloud as follows. At 

each step, any particle outside of the arena was removed, and a random particle within the arena cloned. 

This process is equivalent to the multiplication of the likelihood term in a standard formulation of Bayes’ 

theorem. The likelihood distribution here may be considered as a uniform distribution over the area of the 

arena in memory, and zero everywhere else. Hence particles outside the arena were assigned a likelihood 

(weight) of zero. The redistribution of points is equivalent to the resampling procedure described below, and 

may be considered to be analogous to the normalizing denominator whereby the total number of particles 

(total distribution probability) is preserved.  

 

On contact with an arena wall, the importance of particle j was given by the weight 
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where and wd wω  are the distance and angle respectively to the nearest point on the wall estimated during 

wall contact, while  and jd jω  are the distance and angle of particle j relative to its nearest point on the 

wall. This weight is in fact proportional to the conditional probability (likelihood) of the observed wall 

contact sensory information, given the pose of particle j. The proportionality constant was dropped since it 

was the same for all particles so did not affect the resampling process. For simplicity, error standard 

deviations were assumed to be available to the navigation system. Such information may be hardwired 

through natural selection or learnt through experience.  

 

Particle Resampling Process 

In particle filter applications, it is necessary to prevent particle weights from becoming degenerate, i.e., 

becoming extremely large or approaching zero. This occurs frequently in practice as only a few particles 

remain close to the true pose and are assigned large weights, whereas the majority are poor estimates of true 



pose and have diminishingly small weights. Resampling enables particles with large weights to be cloned, so 

that pose space which match sensory data well is sampled more heavily. At the same time, particles with 

diminishingly small weights are removed as they are unlikely to provide reasonable estimates of true pose in 

the future. 

In brief, stochastic universal resampling of n particles with weights w1, w2, ... , wn is carried out as follows. 

Divide an interval W0 into n segments in proportion to the n weights. Divide a second interval of equal 

length, W1, into n even segments, and place a particle at the centre of each. These are the new particles. Shift 

the entire set of new particles by the same random distance such that they remain in W1. Align W0 and W1 in 

parallel, and assign the pose of particle j in W0 to any new particle(s) which are within its interval. Using this 

procedure over a large number of trials, the probability of any particle being cloned is proportional to its 

weight, normalized by the total number of particles. Given an asymptotically large particle population, the 

result of stochastic universal resampling approaches an exact Bayesian posterior distribution. Once 

resampling has been completed, each particle has the same unitary weight. This same procedure may be 

applied following fusion of any sensory information in which the particle weight changes. 

 

The Particle Cloud Population Size 

The main purpose of using a particle filter in this work was to test whether it is sufficient for a drifting HD 

system to be used to maintain a stable representation of place. It was clear that the most challenging case 

under consideration was localization in a circular arena (see results for details). Hence, the particle cloud 

size was chosen to ensure that the performance was sufficiently close to Bayes-optimal in a circular arena, 

while preserving computational tractability. It can be seen that using 104 particles was sufficient to replicate 

an average place stability index ( pI  ) comparable to larger particle populations (Fig S3A) while the 

variability in Ip was not much larger even after 48 minutes of simulated navigation without vision (Fig S3B). 

Using 104 particles, it was feasible to use a standard desktop computer to simulate a range of arenas and 

experiments, keeping the cloud size constant, with 1,000 random trials per scenario. 

 

It should be noted that the place stability index was developed to measure both the accuracy and precision of 

an uncertainty distribution. However, a small particle population is at best a coarse sample of the true 

uncertainty distribution and cannot maintain low probability pose estimates for an extended period of time. 

In essence, the full spread of the true uncertainty distribution is lost, which tends to cause an inflation of the 

Ip value due to an inadequate estimate of the spread of the uncertainty distribution (inversely related to 

precision), but not an improvement in the accuracy (Fig S3A).  In contrast, a single best estimate of position 

is more directly related to how well the true uncertainty distribution is represented. This effect can be seen in 

the magnitude of the error of the particle cloud’s estimate of true position (Fig S3C & S3D). These results 

also show that some improvement in the performance of the particle filter may be possible if larger particle 

populations are used. However, the variation in performance over three orders of magnitude of particle 



population was relatively small compared to the differences in performance seen across different simulated 

arenas and navigational information used. 

 

Using Suboptimal Information 

It is worth noting that an exact sensory error model was not critical in demonstrating sufficiency in terms of 

maintaining place stability without vision. In a series of earlier simulations (data not shown) in both circular 

and rectangular arenas, the wall contact error standard deviations were assumed to be unavailable, and were 

instead replaced by d wd dσ = − j  and wω jσ ω ω= −  respectively. Resampling was also simplified such 

that the lower 95% of particles by weight were culled, and the remaining 5% were cloned to repopulate the 

particle cloud. Each particle’s pose was then aligned with its nearest wall (or wall segment) to match 

( ,w wd )ω . The motivations for these simulations were twofold. Firstly, it provided proof-of-concept that 

maintaining a stable representation of place without vision could be achieved even if the true sensory error 

model was not available. This shows that small departures from Bayes-optimal fusion of information may 

still be compatible with place stability without vision. Secondly, in the iRat experiments, the error 

distributions of the three IR range sensors were not known so this suboptimal method was used to update the 

particle cloud. In the iRat experiments, there were between one and three range estimates during wall 

contact, and each particle weight was assumed to be the product of the weights of all available sensor 

readings. The main disadvantage of using a suboptimal particle weight and resampling procedure is that the 

result does not necessarily approach Bayes-optimal, even if the particle size is extremely large. 

 


