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1st Editorial Decision 01 February 2010 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the three referees who agreed to evaluate your manuscript. As you will see from the reports 
below, the referees raise substantial concerns on your work, which, I am afraid to say, preclude its 
publication.  
 
The reviewers recognized that a better understanding of KRAS-dependent gene regulation in cancer 
would be potentially valuable, but they indicated clearly that the experiments conducted in this work 
were currently insufficient to rigorously validate the predicted KRAS-dependent regulatory network. 
Most importantly, the second reviewer noted that some of the model's predicted regulatory 
interactions run contrary to existing literature reports, and therefore they deserve direct experimental 
testing. Moreover, all three reviewers found the existing experimental validation unconvincing, with 
reviewer #1 raising concerns that the small set of genes used in the transcriptional profiling 
experiments could potentially bias the results, and the second reviewer indicating that more 
comprehensive phenotypic analyses would be needed to fully validate the model predictions. 
Overall, these concerns raised important doubts about the conclusiveness and physiological 
relevance of the regulatory logic in this proposed KRAS network.  
 
Given these clear concerns, we feel we must return this work to you with the message that we 
cannot offer to publish it.  
 
Nevertheless, the reviewers did express interest in this work, and they indicated that extensive 
additional experiments may be able to provide the needed level of support and validation. As such, 
we may be willing to reconsider a new submission based on this work. Such a work would need to 
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include new experiments that directly support and validate the proposed regulatory network. The 
reviewers recommend more extensive microarray or phenotypic analyses, as well as direct testing of 
some of the novel (and potentially surprising) regulatory interactions. In addition, the editor would 
like to suggest that if this model could be used to predict the outcomes of combinatorial 
perturbations or knockdowns, that would certainly help to support the practical value of this network 
reconstruction approach. We appreciate that this would require substantial additional experimental 
work, and we would understand if you decided, instead, to submit this work to another journal. A 
new submission would have a new number and receipt date. If you do decide to follow this course 
then please enclose with your re-submission an account of how the work has been altered in 
response to the points raised in the present review.  
 
I am sorry that the review of your work did not result in a more favorable outcome on this occasion, 
but I hope that you will not be discouraged from sending your work Molecular Systems Biology in 
the future.  
 
Also, I acknowledge that the review process took somewhat longer than usual in this case, due to 
delays in receiving the reviewers' reports.  
 
Thank you for the opportunity to examine this work.  
 
Yours sincerely,  
 
Editor  
Molecular Systems Biology  
_______________________  
 
Reviewer #1 (Remarks to the Author):  
 
The paper by Stelniec et al aims to elucidate regulatory networks downstream of RAS in ovarian 
cancer in a combined experimental-computational approach.  
 
The study targets 7 transcription factors (TFs) by RNAi and reconstructs a regulatory network from 
perturbation effects. The main data set consists of changes in the 7 TFs observed after perturbing 
one of them. From this data the authors reconstruct a regulatory network showing a two-layered 
regulatory hierarchy.  
 
Additional evidence for this hierarchy comes from the analysis of growth phenotypes showing the 
responses to perturbing members of the upper layer are a superset of the responses to perturbing 
members of the lower layer. An interpretation would be that the lower layer has a more specialized 
regulatory than the upper layer.  
 
A third data set analyzed shows the transcriptional response of 329 validated RAS pathway target 
genes to TF perturbations. This part of the analysis is somewhat weaker than the rest. What is the 
scientific rationale for restricting the analysis to this small set of genes? It's good to have a list of 
validated targets, but a genome-wide analysis could have shown much more overlap between 
transcriptional profiles. The observations that patterns of target regulation did not overlap 
substantially could be completely due to this bias in gene selection. In particular, if the overlap is so 
small, doesn't that contradict the tight connections we see within the layers in Fig 4? Why are the 
two layers not already visible in Fig 2D, which shows the overlap of transcriptional responses?  
 
The rationale behind the growth data is "responses mediated by downstream factors ... were a subset 
of those mediated by upstream factors". Shouldn't this subset relation also be visible in the 
expression data? Genes regulated by the downstream factors should also react if the upstream 
factors are perturbed, while genes directly regulated by the upstream factors should only respond to 
perturbing the upstream factors.  
 
I don't expect all of this to be visible 100%. I understand about noise, feedback and compensation 
mechanisms. But the low overlap between transcriptional responses worries me, given that the main 
result of the paper is a highly connected network.  
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Reviewer #2 (Remarks to the Author):  
 
In this manuscript, the authors adopt a systems biology approach to dissect the regulatory network 
involving 7 transcription factors, selected from 51 TFs up-regulated by the KRAS oncoprotein in an 
in vitro transformation system of rat ovarian epithelial cells. On the basis of a reverse-engineering 
approach applied to the results generated by perturbation experiments (selective inhibition of 
signaling pathways and knockdown of each of the 7 TFs followed by RT-PCR and WB analysis), 
the authors propose a network in which the analyzed transcription factors can be separated in two 
hierarchically distint groups. In support of the proposed model, the authors show the effect of the 
members of the two groups of TFs on several growth parameters and target gene expression.  
 
Given the relevance of the KRAS-dependent transcriptional networks in human tumorigenesis, this 
is a very interesting contribution, based on a strategy (MRA, modular response analysis) previously 
applied to the study of various gene networks. However, the experimental validation of the model 
prediction is incomplete and not fully convincing.  
 
Major points:  
 
1. The inferred regulatory network (Fig.3B and scheme in Fig.4) leads to predictions concerning:  
a) the reciprocal interactions between between 3 signaling pathways and 7 transcription factors 
(panels 1,4,7,9 in Fig.3B);  
b) the reciprocal interactions between the 7 transcription factors (panels 3 in Fig.3B), leading to the 
distinction between two hierarchical groups (Fig-4).  
While the proposed transcription factor hierarchy is tested in Fig.5, the model predictions of the 
effect of signaling pathways on protein levels of TFs are not experimentally verified. This would be 
particularly relevant in the case of Fosl1, for which the hitherto unknown model prediction is in 
striking contrast with multiple independent reports (Vial E. et al., J. Cell Sci. 2003; Casalino et al., 
MCB 2003; Murphy LO et al., MCB 2004;Basbous et al., 2007) showing that ERK phosphorylation 
positive controls the level of the Fosl1 gene product (Fra-1).  
To test the reliability of the proposed model, the authors should show that in their cell system Fra-1 
is actually negatively controlled by ERK activity (by investigating, for example, the Fra-1 stability 
and/or accumulation of the protein ectopically expressed under control of a heterologous promoter, 
as shown in Basbous et al., 2007).  
 
2. Along with the gene expression clusters inferred by expression profiling of the transcripts affected 
by each of the 7 transcription factors, the authors suggest that the differential effect on 2D growth of 
RelA/Otx1/Gfi1 vs Hmga2/JunB/Fosl1/Klf6 (Fig.5) reflects the proposed hierarchy between 
"upstream" and "downstream" transcription factors (Fig.4).  
For full validation of the model prediction, the authors should test if other parameters of the KRAS-
dependent neoplastic transformation, such as cell motility, invasiveness, anoikis, etc., are 
differentially affected by the knockdown of members of the two "hierarchically separated" groups of 
transcription factors.  
 
Reviewer #3 (Remarks to the Author):  
 
The authors apply a systems approach to investigate ROSE-RAS cells. They measure mRNA 
expression with a customized array, knock-down specific nodes, transcription factors and cell 
signaling components, and measure outcome phenotype with invasion assays. There experimental 
procedures appear to be valid but the computational analysis does not appear fully cohesive and to 
the point. There are many small but important issues that need to be address before the paper can be 
published.  
 
Specific comments:  
 
"So far, signaling kinase inhibitors which target the PI-3-K/Akt- or Raf/Mek/Erk-pathways have 
shown limited therapeutic efficacy in the clinical setting." Please elaborate with references.  
 
"Microarray analysis permits the simultaneous assessment of many network elements. However, the 
derivation of the network topology from microarray data is not straight-forward, as network 
perturbation data are lacking". Most microarray analyses are done on perturbation data. The problem 
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with microarrays is that they measure mRNA levels which do not directly reflect regulatory 
mechanisms. This is not clearly stated by the authors.  
 
"Bayesian statistics, neural network type ODE models (Busch et al, 2009) and metabolic control 
analysis (Kholodenko et al, 2002)" More examples are needed to show appropriate coverage of the 
topic. Tools such as ARACNE the infderelator and eureqa should be mentioned.  
 
Page 4 "contrasted" I think it was meant "constructed"  
 
"the adhesion molecule E-cadherin (Malek et al., unpublished data)." If microarrays were performed 
and the data was previously published why there is a reference to Malek et al., unpublished data?  
 
Explain "anoikis" for the non-expert reader.  
 
Page 4 "Reversely" should be "reverse"  
 
Page 4 "focussed" should be "focused"  
 
"we focussed on the transcription factors Fosl1, Gfi1, Hmga2, JunB, Klf6, and Otx1" Is it known 
that these factors regulate the genes that changed in expression? Do the factors have binding motif 
sequences at the promoters of the genes that changed in expression? Is there ChIP evidence for any 
of these factors? Can the kinase be linked to the factors through known pathways?  
 
"RelA was not included in the KRAS pathway-dependent gene signature, but was up-regulated at 
the protein level" protein level experiments never introduced before this comment. The reader does 
know about these experiments yet.  
 
"modular response analysis" approach should be explained at the bottom of page 4 and not so much 
in the results.  
 
Most of page 6 belongs in the introduction.  
 
Direct physical interaction between RelA and Hmga2 should be mentioned (PMID: 12693954)  
 
"customised microarrays representing 329 independently validated RAS pathway-target genes. 
KRAS oncogene-mediated transformation of ROSE cells was associated with the deregulation of 
147 target genes." Not clear if the 147 are a subset of the 329? If the 147 are a subset of the 329, 
why the rest of the genes are on the microarray? Need clear and detailed explanation.  
 
"We concluded that the RAS pathway orchestrated the de-regulation of the transcriptome via a 
limited number of transcription factors, each of which controls the transcription of distinct subsets of 
target genes." This conclusion is problematic as there could be many other explanations for the 
observed results. Randomized controls need to be created. Also, there is no mention of genes that 
were aggravated by the knockdown, i.e. further increased or further decrease in expression due to 
the knock-down.  
 
Figure 3A is most central to the paper but difficult to understand. From the figure it looks like 
inhibiting pErk does not have an effect or has an effect that is similar to the over-expression of Ras. 
Is this true? It is also difficult to understand how the MRA algorithm came to the conclusions it did 
given the results from 3A. The colors do not match.  
 
"calculated the correlation coefficients between transcription factor and target gene mRNAs over 9 
experimental perturbation conditions" Not clear why this was done this way and not just compare 
the expression of the genes fold change or just change vs. the control. There is not mention in the 
methods how the correlation coefficients were calculated.  
 
The way the global response matrix R depicted in Figure 3A is too complex and not producing clear 
results. It should be replaced with a simpler procedure.  
 
"feedback regulation of exogenously overexpressed RAS protein by other nodes in the network" Not 
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clear. Why not shown?  
 
"The best model fit agrees well with the measured perturbationresponse data (Fig. 3C)." This needs 
to be further quantified and explained.  
 
The reduced growth by knocking down the transcription factors is not a valid validation of the 
model by itself since such experiments could have been done regardless of the modeling.  
 
The MRA model is relatively complex so one wonders if the separation between Otx1, Gfi1 and 
RelA vs. Hmga2, Fosl1, Klf6 and JunB that was shown for the validation in Fig. 5 could have been 
identified by correlation analysis.  
 
What is the relationship between the transcription factors within each layer?  
 
In figure 5E legend and text it says 7 + 2 = 9 conditions but only 7 are shown, what about the Akt 
and Erk conditions? How come these are not a part of the clustergram? 
 
 
 
 
 
 Re-submission 23 April 2012 

 
  Thank you very much for expressing an interest in our work. We very much appreciate that you are 
willing to consider an advanced version of our manuscript as a new submission. As suggested by the 
reviewers, we have included additional microarray experiments, functional and phenotypic assays. 
In addition, we followed your suggestion to test the model with double-perturbation experiments. 
Please find enclosed an account of how we have completed our work in response to the points raised 
in the previous review.  
 
Remarks of Reviewer #1: The paper by Stelniec et al aims to elucidate regulatory networks 
downstream of RAS in ovarian cancer in a combined experimental-computational approach. The 
study targets 7 transcription factors (TFs) by RNAi and reconstructs a regulatory network from 
perturbation effects. The main data set consists of changes in the 7 TFs observed after perturbing 
one of them. From this data the authors reconstruct a regulatory network showing a two-layered 
regulatory hierarchy. Additional evidence for this hierarchy comes from the analysis of growth 
phenotypes showing the responses to perturbing members of the upper layer are a superset of the 
responses to perturbing members of the lower layer. An interpretation would be that the lower layer 
has a more specialized regulatory than the upper layer. A third data set analyzed shows the 
transcriptional response of 329 validated RAS pathway target genes to TF perturbations. This part 
of the analysis is somewhat weaker than the rest. What is the scientific rationale for restricting the 
analysis to this small set of genes? It's good to have a list of validated targets, but a genome-wide 
analysis could have shown much more overlap between transcriptional profiles. The observations 
that patterns of target regulation did not overlap substantially could be completely due to this bias 
in gene selection. In particular, if the overlap is so small, doesn't that contradict the tight 
connections we see within the layers in Fig 4? Why are thetwo layers not already visible in Fig 2D, 
which shows the overlap of transcriptional responses?  
 
 Authors’ response: We agree that Fig 2D and its description was misleading, mainly due to 
confusing data normalization: The figure showed that each transcription factor regulates less than 
20% of all RAS pathway target genes, and that two factors typically share 10% of all RAS targets or 
less. Thus, while the number of shared (co-regulated) RAS targets is small relative to all RAS 
targets, it is large relative to the number of targets regulated by each factor. For example, more 
than half of RelA targets are also regulated by Otx, suggesting strong overlap. Following the 
reviewer’ suggestion, we analyzed target gene expression by interrogating commercial 
(transcriptome-wide) microarrays and replaced Fig. 2C/D with a more understandable quantification 
of overlap. These demonstrate a substantial overlap of targets, which were sensitive to transcription 
factor knockdowns. We had decided to use our customized rat oligonuleotide microarry platform 
(published in Methods in Enzymology, 2005) initially for the following reasons: The differential 
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expression all Ras pathway targets represented on the array had been validated by several 
independent analytical methods (cDNA subtraction, reverse northern analysis, conventional northern 
analysis or RT-PCR), just trying to respect the “old” tradition in biochemical analysis. We did not 
consider a potential bias a serious problem, because we focused on transcription factors up-regulated 
by oncogenic Ras and their targets which are likely to contribute to cellular transformation and 
malignancy. In spite of the wide coverage of the transcriptome, the commercial rat microarray is of 
limited value for target gene identification, because the rat genome is less well annotated than the 
human or mouse genome and the probes often match multiple transcripts. These shortcomings 
somehow hamper the unambiguous identification of expressed genes. Our conclusions concerning 
the network organization are now based on the analysis of two independent microarray platforms. 
As regards the whole transcriptome analysis, most probe sets that correspond to Ras-responsive 
gene transcripts change significantly upon knockdown of multiple transcription factors, thus 
providing evidence for a highly connected network (revised Fig. 2D). Moreover, each knockdown 
affects hybridization of target mRNA to a large number of probe sets on the array, supporting the 
conclusion that all transcription factors are part of this network (revised Fig. 2C). We agree with the 
reviewer that the hierarchical patterns should be visible in the gene expression response. We applied 
several strategies for detecting hierarchies in high-throughput datasets (e.g., nested effect models, 
gene filtering by expression cut-offs). While each method has its limitations, the conclusion from 
our analyses was that the gene expression profiles do not show a strict universal hierarchical 
regulation pattern, which would include all transcriptional regulators and targets in the set analysed. 
This means that target genes responding to perturbations of downstream factors are not invariably 
co-regulated by an upstream factor. However, Otx1 knockdown is the perturbation that shows the 
largest percentage of positive probe sets not responding to any other knockdown. This pattern would 
be consistent with an upstream role of this transcription factor. To systematically investigate 
whether target gene expression patterns are consistent with a hierarchical organisation of the 
regulators, we employed gene filtering using expression cut-offs to identify probe sets whose 
perturbation-response resembled the patterns of transcription factor mRNA or protein (cf. revised 
text). As shown in the revised Figs. 3B and C, we found that a large part of the gene expression 
responses is consistent with the transcription factor expression patterns in Fig. 3A, This finding 
supports the concept of hierarchical regulation. Specifically, for each of the seven transcription 
factors, we find genes that match the perturbation response pattern, and may thus be directly 
regulated by this factor. Taken together, we conclude that the array measurements are partially 
consistent with hierarchical regulation, but also contain patterns that contradict the hierarchy. At 
present, it is difficult to understand why these contradictions arise. One explanation may be that 
hierarchy is less pronounced for target genes, whose transcription is controlled in the same way as 
the transcription of the seven factors (Fig. 3B). One might further speculate that these genes may be 
controlled in a combinatorial fashion or that they require input from (upstream) transcription factors 
not considered in the perturbation response analysis (including transcription factors that are not 
differentially expressed upon Ras oncogene expression). Following this argument, a perturbation 
screen containing all 51 RAS regulated transcription factors would be required; we believe that this 
is beyond the scope of the present work. Therefore, we prefer to rely on double perturbation 
experiments and phenotypic analyses for supporting the proposed transcription factor hierarchy (see 
revised manuscript and below). Major changes in the manuscript: - We described the additional 
whole-genome transcriptome analysis in the text. - In Figure 2, we added panels showing the 
overlaps in the larger Affymetrix micro-array analysis, and the number of common targets is 
displayed as histogram. - We modelled the response of the transcriptome and results are shown in 
Fig. 3.  
 
Reviewer: The rationale behind the growth data is "responses mediated by downstream factors ... 
were a subset of those mediated by upstream factors". Shouldn't this subset relation also be visible 
in the expression data? Genes regulated by the downstream factors should also react if the upstream 
factors are perturbed, while genes directly regulated by the upstream factors should only respond to 
perturbing the upstream factors. Authors’ response: Please see our answer to the previous point. 
Reviewer: I don't expect all of this to be visible 100%. I understand about noise, feedback and 
compensation mechanisms. But the low overlap between transcriptional responses worries me, 
given that the main result of the paper is a highly connected network.  
 
 Authors’ response: As stated before, our presentation of the overlap was misleading, as the overlap 
is relatively high, and we thank the reviewer for pointing this out. The genome-wide expression 
analysis also confirms that the network is strongly connected. We find that a large number of genes 
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are regulated by many of the transcription factors, and our model shows that this is due to the high 
connectivity within the network.  
 
Reviewer #2 (Remarks to the Author): In this manuscript, the authors adopt a systems biology 
approach to dissect the regulatory network involving 7 transcription factors, selected from 51 TFs 
up-regulated by the KRAS oncoprotein in an in vitro transformation system of rat ovarian epithelial 
cells. On the basis of a reverse-engineering approach applied to the results generated by 
perturbation experiments (selective inhibition of signaling pathways and knockdown of each of the 7 
TFs followed by RT-PCR and WB analysis), the authors propose a network in which the analyzed 
transcription factors can be separated in two hierarchically distint groups. In support of the 
proposed model, the authors show the effect of the members of the two groups of TFs on several 
growth parameters and target gene expression. Given the relevance of the KRAS-dependent 
transcriptional networks in human tumorigenesis, this is a very interesting contribution, based on a 
strategy (MRA, modular response analysis) previously applied to the study of various gene 
networks. However, the experimental validation of the model prediction is incomplete and not fully 
convincing.  
 
Major points:  
1. The inferred regulatory network (Fig.3B and scheme in Fig.4) leads to predictions 
concerning: a) the reciprocal interactions between between 3 signaling pathways and 7 
transcription factors (panels 1,4,7,9 in Fig.3B); b) the reciprocal interactions between the 7 
transcription factors (panels 3 in Fig.3B), leading to the distinction between two hierarchical 
groups (Fig-4). While the proposed transcription factor hierarchy is tested in Fig.5, the model 
predictions of the effect of signaling pathways on protein levels of TFs are not experimentally 
verified. This would beparticularly relevant in the case of Fosl1, for which the hitherto unknown 
model prediction is in striking contrast with multiple independent reports (Vial E. et al., J. Cell Sci. 
2003; Casalino et al., MCB 2003; Murphy LO et al., MCB 2004;Basbous et al., 2007) showing that 
ERK phosphorylation positive controls the level of the Fosl1 gene product (Fra-1). To test the 
reliability of the proposed model, the authors should show that in their cell system Fra-1 is actually 
negatively controlled by ERK activity (by investigating, for example, the Fra-1 stability and/or 
accumulation of the protein ectopically expressed under control of a heterologous promoter, as 
shown in Basbous et al., 2007).  

 
 Authors’ response: We thank the referee for this suggestion. Indeed, the model contradicts previous 
findings in that it assumes that Fosl1 is destabilized by Erk activity. Therefore, we tested whether 
Fosl1 is stabilized by Erk also in our cells by expressing Fosl1 ectopically and measuring protein 
levels after treatment with the MEK inhibitor. Erk does indeed stabilize Fosl1 in our cell system, 
thus confirming the published reports and invalidating our model (revised Fig. 5 A and B). 
Nevertheless, our data show that a negative post-transcriptional regulation of the Fosl1 pool is 
essential to explain the experimental measurements: In Fig. 3A, the Fosl1 mRNA pool is 
upregulated by several perturbations, while Fosl1 protein is down-regulated at the same time. We 
confirmed this observation by an independent set of experiments (see revised Fig. 5). In our 
previous model, this could only be attributed to Fosl1 protein destabilization by pErk, since 
posttranscriptional interactions between transcription factors were not allowed during the model 
selection procedure. We speculated that Fosl1 protein stability may also be influenced by other 
transcription factors (possibly via molecular species not considered in our perturbation screen). 
Thus, we relaxed our model constraints, and allowed the Fosl1 protein to be post-transcriptionally 
regulated by other transcription factors in a refined model (cf. revised text). Model selection 
revealed three potential post-transcriptional interactions controlling Fosl1 protein levels, of which 
we tested the strongest interaction (Fosl1 protein stabilization by Otx1) by a double-perturbation 
experiment. These experiments confirm the model prediction, and, interestingly, they point to 
posttranscriptional regulation in the gene regulatory network without feedback to the MAPK 
cascade. Major changes in the manuscript: We have added a new Figure in the manuscript that 
describes these experiments (Figure 5), and added a new section to the manuscript describing it. 
Notably, the Fosl1 overexpression experiments proposed by the reviewer also allowed us to confirm 
some aspects of hierarchical organization in the transcription factor network (Fig. 5).  
 
 
Reviewer: 2.  
 



Molecular Systems Biology  Peer Review Process File  
 

 

 
© European Molecular Biology Organization 8 

Along with the gene expression clusters inferred by expression profiling of the transcripts affected 
by each of the 7 transcription factors, the authors suggest that the differential effect on 2D growth of 
RelA/Otx1/Gfi1 vs Hmga2/JunB/Fosl1/Klf6 (Fig.5) reflects the proposed hierarchy between 
"upstream" and "downstream" transcription factors (Fig.4). For full validation of the model 
prediction, the authors should test if other parameters of the KRASdependent neoplastic 
transformation, such as cell motility, invasiveness, anoikis, etc., are differentially affected by the 
knockdown of members of the two "hierarchically separated" groups of transcription factors.  
 
Authors’ response: We performed wound healing assays, which further confirm the hierarchical 
grouping of transcription factors. The results of these assays are now presented in Figure 6D, E.  
 
Reviewer #3 (Remarks to the Author): There experimental procedures appear to be valid but the 
computational analysis does not appear fully cohesive and to the point. There are many small but 
important issues that need to be address before the paper can be published.  
Specific comments:"So far, signaling kinase inhibitors which target the PI-3-K/Akt- or Raf/Mek/Erk-
pathways have shown limited therapeutic efficacy in the clinical setting." Please elaborate with 
references.  
 
 Authors’ response: 
Two references have been inserted (page 3). In view of still ongoing experimental and clinical trials 
using MAPK and PI3K inhibitors and ongoing mechanistic studies, a large number of references 
should be quoted to cover the subject properly. However, we believe that this would be beyond the 
scope of this paper.  
 
Reviewer: "Microarray analysis permits the simultaneous assessment of many network elements. 
However, the derivation of the network topology from microarray data is not straight-forward, as 
network perturbation data are lacking". Most microarray analyses are done on perturbation data. 
The problem with microarrays is that they measure mRNA levels which do not directly reflect 
regulatory mechanisms. This is not clearly stated by the authors.  
 
Authors’ response: We have changed the text accordingly (page 3)  
 
Reviewer: "Bayesian statistics, neural network type ODE models (Busch et al, 2009) and metabolic 
control analysis (Kholodenko et al, 2002)" More examples are needed to show appropriate 
coverage of the topic. Tools such as ARACNE the infderelator and eureqa should be mentioned.  
 
Authors’ response: We have expanded the section on page 4 and quoted these and other additional 
methods.  
 
Reviewer: Page 4 "contrasted" I think it was meant "constructed"  
 
Here we meant “contrasted” (and previously published it), because subtractive hybridization and the 
performed microarray analysis have compared two different conditions (normal versus 
RAStransformed). We have changed contrasted to compared, to avoid confusion.  
 
Reviewer: "the adhesion molecule E-cadherin (Malek et al., unpublished data)." If microarrays 
were performed and the data was previously published why there is a reference to Malek et al., 
unpublished data?  
 
Authors’ response: These unpublished data is not necessary for the manuscript and the reference 
was removed from the introduction.  
 
Reviewer: Explain "anoikis" for the non-expert reader.  
 
Authors’ response: We thank the reviewer for pointing this out. Anoikis designates programmed cell 
death induced by depriving anchorage dependent cells (such as “normal” epithelial cells) from their 
substratum (e.g. the plastic cell culture dish). We deleted this from the introductory text because the 
term anchorage independence is sufficient to describe the phenotypic properties in KRAS 
transformed cells.  
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Reviewer: Page 4 "Reversely" should be "reverse"  
Authors’ response: We changed this.  
 
Reviewer: Page 4 "focussed" should be "focused"  
Authors’ response: Both spellings are OK in British English according to Macmillan Dictionary.  
 
Reviewer: "we focussed on the transcription factors Fosl1, Gfi1, Hmga2, JunB, Klf6, and Otx1" Is it 
known that these factors regulate the genes that changed in expression? Do the factors have binding 
motif sequences at the promoters of the genes that changed in expression? Is there ChIP evidence 
for any of these factors? Can the kinase be linked to the factors through known pathways?  
 
Authors’ response: The selection process was as follows: We found 51 transcription factors that 
showed up-regulation. We included two of them, Hmga2 and Fosl1 since they are known to 
contribute to malignant phenotype. We included four additional factors (Otx1, Klf6, Gfi1, JunB), 
since they met several functional criteria (high expression in inflammatory responses, tissue 
damage, tumourigenisis and repression in differentiated cells). In addition, we included RelA as a 
transcription factor that is regulated on the post-translational level but is known to contribute to the 
malignant phenotype. This is now described in detail in the introduction.  
 
Reviewer: "RelA was not included in the KRAS pathway-dependent gene signature, but was 
upregulated at the protein level" protein level experiments never introduced before this comment. 
The reader does know about these experiments yet.  
 
 Authors’ response: We have changed this section and cited the relevant paper, in which RelA was 
shown to be post-translationally regulated by Ras.  
 
Reviewer: "modular response analysis" approach should be explained at the bottom of page 4 and 
not so much in the results.  
 
Authors’ response: We moved this part to the introduction.  
 
Reviewer: Most of page 6 belongs in the introduction.  
 Authors’ response: We moved the description of transcription factors selection to the introduction.  
 
Reviewer: Direct physical interaction between RelA and Hmga2 should be mentioned (PMID: 
12693954).  
Authors’ response: We added this reference together with other references of previously known 
interactions to the supplement.  
 
Reviewer: "customised microarrays representing 329 independently validated RAS pathway-target 
genes. KRAS oncogene-mediated transformation of ROSE cells was associated with the 
deregulation of 147 target genes." Not clear if the 147 are a subset of the 329? If the 147 are a 
subset of the 329, why the rest of the genes are on the microarray? Need clear and detailed 
explanation.  
 
Authors’ response: Our group has been working on the identification and characterization of 
RAStarget genes for almost 20 years (cf. Zuber et al., Nature Genetics, 2000), and the 329 genes 
represent target that have been identified in diverse experimental systems such as fibroblasts, 
epithelial cells and carcinomas. Thus, in any given cell type, only a subset of these genes are 
expressed and regulated by RAS. As we have now performed transcriptome-wide measurements, we 
have shortened the descriptions of the results from the customized arrays, and described the 
selection procedure of the set of genes for the customized arrays in detail in the materials and 
methods part (page 31).  
 
Reviewer: "We concluded that the RAS pathway orchestrated the de-regulation of the transcriptome 
via a limited number of transcription factors, each of which controls the transcription of distinct 
subsets of target genes." This conclusion is problematic as there could be many other explanations 
for the observed results. Randomized controls need to be created. Also, there is no mention of genes 
that were aggravated by the knockdown, i.e. further increased or further decrease in expression due 
to the knock-down.    
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Authors’ response: Our previous presentation of these results was misleading, mainly due to 
confusing normalization of the data (see response to reviewer 1): The previous Fig. 2D showed that 
each factor regulates less than 20% of all RAS-regulated genes, and that two factors share typically 
10% or less of all RAS targets. Thus, while the number of shared RAS targets is small relative to all 
RAS targets, it is large relative to the number of targets regulated by each factor. For example, 
more than 50% of RelA targets are also regulated by Otx, thus suggesting strong overlap. In the 
revised manuscript, we replaced the previous Fig. 2C/D with an analysis of a genome-wide dataset 
(see below), which shows even more substantial overlap between knockdowns. Thus, the array data 
is fully consistent with a highly interconnected network of transcription factors. In a randomized 
control, the probability of a gene being regulated by multiple transcription factor would be much 
smaller than found here (revised Figure 2D). There were roughly as many genes regulated by 
multiple (or even 7) knockdowns as by a single knockdown. Thus, given that our scrambled siRNAs 
affected few genes only, it is highly unlikely that these results can be explained by chance only. We 
agree with the referee that the transcriptome analysis alone does not allow the conclusion that the set 
of transcription factors investigated here each controls a distinct subset , and therefore removed this 
sentence from the manuscript.  
 
Reviewer: Figure 3A is most central to the paper but difficult to understand. From the figure it looks 
like inhibiting pErk does not have an effect or has an effect that is similar to the over-expression of 
Ras. Is this true? It is also difficult to understand how the MRA algorithm came to the conclusions it 
did given the results from 3A. The colors do not match.  
 
Authors’ response: Figure 3A showed values proportional to the global response coefficients. These 
are defined in such a way that they are positive, if the response follows the same direction as the 
perturbation. As RAS expression positively affects most of the transcription factors, and Mek 
inhibition negatively regulates them, both effects have positive response coefficients. We agree that 
this is difficult to understand, and thus plotted log2 fold-changes in the revised manuscript (which 
are the same numerical values as in the previous Figure, but have in part opposing signs for all 
inhibitor- and knockdown experiments) in Figure 3A. In response to the comment below, we also 
present the data as a heat map.  
 
Reviewer: "calculated the correlation coefficients between transcription factor and target gene 
mRNAs over 9 experimental perturbation conditions" Not clear why this was done this way and not 
just compare the expression of the genes fold change or just change vs. the control. There is not 
mention in the methods how the correlation coefficients were calculated.  
 
 Authors’ response: The idea was that direct targets of a transcription factor should show the same 
perturbation-response pattern as the transcription factor itself (i.e., the perturbation-response patterns 
should have a high correlation coefficient). We agree with the reviewer that the previous 
presentation needs improvement; we therefore replaced the correlation analysis by a figure that 
directly compares perturbation-response patterns of transcription factors and target genes in the 
genome-wide arrays (revised Fig. 3B and C). In the construction of this figure, we used gene 
filtering using expression cutoffs which turned out to be more robust against artifacts when 
compared to correlation analysis. Figs. 3B and C show that many gene patterns are closely related to 
transcription factor patterns, thus suggesting that these are indeed direct target genes of the 
corresponding transcription factors.  
 
Reviewer: The way the global response matrix R depicted in Figure 3A is too complex and not 
producing clear results. It should be replaced with a simpler procedure.  
 
 Authors’ response: See response before. In the revised ms. we do have plotted the fold-changes 
rather than the response coefficients, relabeled the columns, and used a heat map to illustrate the 
results.    
 
 Reviewer: "feedback regulation of exogenously overexpressed RAS protein by other nodes in the 
network" Not clear. Why not shown?   
 
Authors’ response: Since the KRAS-transformed cell line has been characterized in a previous 
publication, we did not show the difference between endogenous, wild-type RAS levels and 
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ectopically expressed, oncogenic RAS, which is much more abundant than wild-type RAS 
(Tchernitsa et al., Oncogene, 2004). Since oncogenic RAS is constitutively active (i.e., always 
bound to GTP), we can assume that the total amount of active RAS-GTP correlates well with the 
total expression of oncogenic RAS. Since the expression of oncogenic RAS is not affected by the 
knockdowns, we can neglect feedback regulation upstream of RAS. In the revised Fig. 3A, these 
measurements would correspond to an empty (white) row, therefore we decided to omit this (note: 
Fig. 3A contains a RAS perturbation column but not a RAS expression row).  
 
Reviewer: "The best model fit agrees well with the measured perturbation response data (Fig. 3C)." 
This needs to be further quantified and explained.  
 
 Authors’ response: In the revised ms,. we report the Chi2 value and show the experimental 
variability in the scatter plot comparing experimental data and the model (previously Fig 3C, now 
Fig. 4C).  
 
Reviewer: The reduced growth by knocking down the transcription factors is not a valid validation 
of the model by itself since such experiments could have been done regardless of the modeling.  
  
Authors’ response: We agree that the hierarchical model primarily helps to understand these 
experimental results, but was not instructive for the experimental design. We made this now clear in 
the results. In order to provide direct testing of a model prediction, we employed the Fosl1 
overexpression system, as proposed by reviewer 2, to confirm the model more directly by 
modeldriven experiments. Specifically, we investigated post-transcriptional interactions among 
transcription factors and confirmed model-predicted hierarchical interactions between Fosl1 and 
Hmga2 (revised Fig. 5).  
 
Reviewer: The MRA model is relatively complex so one wonders if the separation between Otx1, 
Gfi1 and RelA vs. Hmga2, Fosl1, Klf6 and JunB that was shown for the validation in Fig. 5 could 
have been identified by correlation analysis.  
 
Authors’ response: The problem with correlation analysis is that it does not help to identify 
directionality. In the particular network described, we recognize a clear directionality from the upper 
to the lower level. For example, there is a strong directional link from Otx to Fosl, so these correlate 
strongly. However, correlation will not assign Otx to the upstream part of the network and Fosl1 to 
the downstream part. In this regard, MRA is clearly superior to correlation analysis.  
 
Reviewer: What is the relationship between the transcription factors within each layer?  
 
 Authors’ response: The transcription factors within each layer may also show hierarchical 
regulation or they may act relatively independent of each other. The lower layer appears to be 
organized hierarchically: neglecting feedbacks via the signaling network, we observe a 
transcriptional cascade (KLF6 -> Fosl1 -> JunB -> Hmga2), whose directionality is intercepted by a 
single interaction only (JunB -> Klf6). Accordingly, Fosl1 and Klf6 knockdowns control more 
factors of the lower layer at the protein level when compared to JunB and Hmga2. In the revised 
Fig. 5, we confirm some aspects of this unidirectional cascade using double perturbation 
experiments. The factors of the upper layer appear to act relatively independent of each other: 
knockdown of each factor in the upper layer hardly affects the other factors in the same layer (Fig. 
3A). This suggests that the corresponding MRA interactions are relatively weak. Accordingly, we 
observe that many target genes are selectively controlled by one of the factors in the upper layer    
 
Reviewer: In figure 5E legend and text it says 7 + 2 = 9 conditions but only 7 are shown, what 
about the Akt and Erk conditions? How come these are not a part of the clustergram?   
 
Authors’ response: The former Fig 5E showed correlation with the expression of the 7 transcription 
factors over all perturbation conditions. We removed this figure from the paper, and replaced it by 
the revised Figs. 3 and C (see response above). In the revised Figs. 3 B and C, we indeed show 7 
seven knockdown conditions only; this is due to the fact that genome-wide transcription profiles 
were measured only for these 7 conditions to investigate interactions among transcription factors. In 
summary, we do hope that we have been able to answer all reviewers’ queries to their satisfaction 
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and have provided sufficient new information. We are very much looking forward to your editorial 
decision on our new manuscript.   
 
 
 
2nd Editorial Decision 23 May 2012 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the three referees who agreed to evaluate the study. As you will see, the referees find the topic 
of your study of potential interest and are largely supportive. They raise however a series of 
important concerns and make suggestions for modifications, which we would ask you to carefully 
address in a revision of the present work.  
 
Reviewers #2 and #3 both reviewed the previous version of this work (MSB-12-3730), they 
generally agreed that the revisions and new experimental evidence had substantially improved this 
work (Reviewer #2 was #1, and #3 was #2 previously). The reviewers, however, felt that additional 
effort was needed to explain the regulatory model construction and to quantify the robustness of the 
model edges (in this regard the first major points from reviewers #1 and #2 seem very closely 
related).  
 
Addressing these concerns, and the other points raised by the reviewers may require additional 
analyses, and we reserve the right to send any revised work back to some or all of the reviewers if 
needed.  
 
When preparing your revised work, please also address the following issues:  
 
Molecular Systems Biology generally requires that all key experimental data are made available 
with research publications.  
 
- Please deposit the expression array data in a public repository like GEO, and include the resulting 
accession numbers in the Methods section. This should also include the custom RAS-targeted 
microarray data -- if these data cannot be included in a public repository for some reason, they can 
also be provided as supplementary materials.  
 
- In addition to our capacity to host datasets in our supplementary information section, we provide a 
new functionality that allows readers to directly download the 'source data' associated with selected 
figure panels (e.g. <http://tinyurl.com/365zpej>). This sort of figure-associated data may be 
particularly appropriate for Figures 2, 5, and 6. Please see our Instructions of Authors for more 
details on preparation and formatting of figure source data 
(<http://www.nature.com/msb/authors/index.html#a3.4.3>). This same system can also be used to 
supply replicate gel images, for example for Fig 1.  
 
 
Thank you for submitting this paper to Molecular Systems Biology.  
 
Yours sincerely,  
 
Editor - Molecular Systems Biology  
msb@embo.org  
 
---------------------------------------------------------------------------  
Referee reports:  
 
Reviewer #1 (Remarks to the Author):  
 
Schafer and colleagues describe a study that aimed at elucidating a KRAS pathway -dependent 
transcriptional network. Receptor Tyrosine Kinase regulated signaling is critical in a number of 
mechanisms during tumourigenesis. The authors systematically perturbed the KRAS signaling 
pathway by transfecting siRNAs targeting seven out of 51 transcription factors (TFs) that they had 
previously identified to be up-regulated in rat ROSE cells upon KRAS-transformation. These TFs 
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were selected based on their known functional involvement in signaling as well as tumor-related 
phenotypes. RelA was selected on top of six RTK-related TFs, as NF-KB-signaling is known to also 
impact on RAS-driven transformation. Remark: it will be interesting to follow-up on RelA and p65 
also because only a minor fraction of the cytosolic p65 protein translocates to the nucleus upon 
activation while the majority of p65 is kept cytoplasmic thus not contributing to NF-KB signaling. 
Hence, changes even in p65 abundance do not directly translate into elevated NF-KB signaling. 
Because of the highly dynamic nature of NF-KB signaling this would be required to test at single 
cell level via microscopy methods.  
 
The authors performed knockdown experiments for each of the seven TFs and then carried out 
expression profiling analysis to detect regulated genes. Indeed they found a number of genes that 
were deregulated upon knockdown of the individual transcription factors. Interestingly, the majority 
of these differentially expressed genes were deregulated by two or more of the seven transcription 
factors under investigation. This led the authors to conclude that KRAS-signaling would be 
regulated by a dense and connected signaling network. This conclusion could suggest that 
perturbations of the individual TFs might regulate some of the other selected TFs. Consequently, the 
abundance of all seven TF proteins was investigated in response to knockdowns by Western Blot. 
And indeed, up- or down-regulation of the majority of the seven TFs was observed at RNA and/or 
protein levels.  
 
Since the experimental design had not been restricted to identifying directly regulated genes but 
could as well detect secondary events, the authors next tested their gene expression datasets for such 
genes that showed similar expression patterns as the selected TFs were affected by knockdown of 
either of the TFs at protein (Figure 3B) and RNA (Figure 3C) levels. This identified a number of 
947 probe sets that indeed displayed transcription patterns that were similar to the protein patterns of 
the individual TFs. This was indication of a direct regulation of these genes by the tested TFs.  
Reverse engineering of the network topology then helped to distinguish direct from indirect effects 
and provided a hierarchical organization of the transcription factors under investigation. While Gfi1, 
Otx1 and RelA should be located upstream in the network, the other TFs appeared to be acting 
further downstream not feeding back on Gfi1, Otx1 or RelA. An unexpected prediction of their 
model involved Fosl1 and Erk signaling, as the model suggested the TF to be destabilized by active 
Erk-signaling. (Remark: Erk signaling is commonly elevated temporarily upon addition of ligands or 
the application of stresses. How stable is the activation state in the steady state conditions of the 
experiments that are described?) This predicted effect of Erk-signaling on Fosl1 levels was in 
contrast to the literature, hence the authors tested their model in a Fosl1 overexpression system after 
addition of the U0126 Mek inhibitor. The resulting data demonstrated that the initial model was 
wrong in at least this interaction, and the model was consequently refined to take reference to the 
new data. The revised model was then further tested as the authors performed experiments 
interrogating phenotypes induced by the different perturbations (cell cycle phase, anchorage-
dependent and -independent growth, collective cell migration).  
 
The authors had started from a larger number of TFs that are deregulated in a KRAS-transformed 
cell line model. They selected seven of the TFs and, driven by experimental data, generated a model 
that could predict the behavior of the individual TFs within a TF-interaction network. Most of the 
interactions had been known already before (literature). It would be interesting to see how many 
known interactions were not predicted/observed and could thus be false-negative interactions in the 
model (compare Figure 4A). Furthermore, in the future the authors might try to confirm some of the 
interactions that are predicted in Figure 4A panels 3 and 9.  
 
Major points  
Why does the model shown in Figure 4C not show edges between pAkt and RelA, Otx1 or Hmga2? 
The data in Figure 1 and also the color code in Figure 3A suggests a strong regulation of Otx1 and 
Hmga2 by PI3K/Akt-signaling. This is somewhat contradictory to statements in the first paragraph 
of the Results part where regulation of Fosl1, Hmga2, Otx1, Klf6, Gfi1 and JunB is said to be 
strictly dependent on Raf/Mek/Erk signaling. Would acceptance of a coregulation of Otx1 and 
Hmga2 by Akt and MAPK signaling affect the model predictions?  
 
The legend for Figure 1 does not give the number of replicates that were generated. In the legend for 
Supplementary Fig. 1 (also in Supplementary Figure 4) the authors should state whether the 
indicated 'two independent experiments' were technical or biological replicate experiments. Ideally, 
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two biological replicates with two technical replicates each should be carried out, since the 
reproducibility of quantitative Western Blotting is rather poor. How well did the individual TFs 
reproduce in the two experiments being mentioned? Since the entire model is based on this protein 
data a better description on the relibility of that data should be provided.  
 
Minor point  
Even if the rat Affymetrix arrays are not well annotated a mapping of probe sets onto genes should 
be done in order to test the reproducibility of results from two or more probe sets representing the 
same genes and to obtain a better idea on the numbers of genes that are up- or down-regulated in 
response to the perturbation experiments (in all, 7561 probe sets are said to represent 1757 genes). 
The numbers and identities of genes should be more relevant than probe numbers in the following, 
e.g., when the numbers of probe sets are given indicating up- or downregulation after TF 
knockdown. For example, the authors should make clear on page 7 when they speak about '1,081 
(18%) of the transcription factor targets' when they refer to Figure 2D whether they mean probes or 
genes (I would assume they mean probe sets).  
 
Reviewer #2 (Remarks to the Author):  
 
This paper has significantly improved compared to its first submission. My main concern had been 
lack of overlap in the transcriptional patterns observed after perturbing TFs in the two network 
layers and a potential bias in only using at RAS-specific microarray. These concerns have been 
resolved.  
 
In my following comments I will concentate on the authors' method and its presentation:  
 
It would strengthen the paper if the strength of evidence for each of the inferred edges could be 
quantified. Right now the graph in 4C is the model with the hightest fit. Is there a way to use cross-
validation or bootstrapping to test how robust this model is? Correlation of predictions with left-out 
data would be a stronger evidence for the models power than correlation with the data used for 
fitting (Fig4B).  
 
The description of model construction and evaluation is not clear to me. In the key equation ((r-1)s - 
pR)2, what is s? what is p? If p is a vector, then pR should be a vector too, are you doing separate 
optimizations for rows of r^-1? I also do not understand the relationship between the Levenberg-
Marquardt algorithm (LMA) used to fit r and p, and the step wise approach desribed directly after 
that. Both optimization approaches lead to local, not necessarily global optima. Did the authors 
check different initializations for LMA? Would the step-wise procedure lead to a similar model as 
the one reported if it started from a random r matrix and added/deleted singel edges to improve fit?  
 
My goal is not to keep the authors busy with more and more simulations and changes to the 
algorithm. The paper looks very mature as it is. But the model construction is at the heart of this 
paper and I see a need to explain it better, including robustness and possible limitations.  
 
Reviewer #3 (Remarks to the Author):  
 
This very interesting manuscript has been substantially improved in its revised version. I am 
particularly impressed by the number of additional microarray assays and functional assays which 
have been included. 
The authors have fully responded to all the points raised in the previous revision. With regard to the 
unexpected posttranscriptional regulation of fosl1, the authors have refined the proposed model, on 
the basis of the novel experimental data now shown in figure 5.  
In addition, the authors have further validated the proposed hierarchical grouping of the two sets of 
transcription factors by cell migration along with 2D growth assays, as shown in figure 6.  
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1st Revision - authors' response 26 June 2012 

Thank you very much for your interest in publishing our work. Please find below a point-by-point 
reply to your suggestions and the reviewers’ comments.   
  
Editor: Please deposit the expression array data in a public repository like GEO, and include the 
resulting accession numbers in the Methods section.  
 
Authors’ reply:  Affymetrix arrays: GSE 38584, GSE 38585 (page 33); customized arrays: GSE 
24668 (page 32) 
  
Editor: In addition to our capacity to host datasets in our supplementary information section, we 
provide a new functionality that allows readers to directly download the 'source data' associated 
with selected figure panels (e.g. <http://tinyurl.com/365zpej>). This sort of figure-associated data 
may be particularly appropriate for Figures 2, 5, and 6. This same system can also be used to 
supply replicate gel images, for example for Fig 1.  
 
Authors’ reply: DONE 
 
 
 
Reviewer #1 (Remarks to the Author):  
  
Schafer and colleagues describe a study that aimed at elucidating a KRAS pathway -dependent 
transcriptional network. Receptor Tyrosine Kinase regulated signaling is critical in a number of 
mechanisms during tumourigenesis. The authors systematically perturbed the KRAS signaling 
pathway by transfecting siRNAs targeting seven out of 51 transcription factors (TFs) that they had 
previously identified to be up-regulated in rat ROSE cells upon KRAS-transformation. These TFs 
were selected based on their known functional involvement in signaling as well as tumor-related  
phenotypes. RelA was selected on top of six RTK-related TFs, as NF-KB-signaling is known to also 
impact on RAS-driven transformation.  
 
Remark: it will be interesting to follow-up on RelA and p65 also because only a minor fraction of 
the cytosolic p65 protein translocates to the nucleus upon activation while the majority of p65 is 
kept cytoplasmic thus not contributing to NF-KB signaling. Hence, changes even in p65 abundance 
do not directly translate into elevated NF-KB signaling. Because of the highly dynamic nature of 
NF-KB signaling this would be required to test at single cell level via microscopy methods.  
 
Authors’ reply:  
We fully agree with the reviewer in that the pertubations affecting mRNA and protein levels are 
quite crude and do not allow conclusions about the dynamics of NF-KB signaling (cytosolic versus 
nuclear effects) and e.g. about  the complex interactions of the components of the AP-1 transcription 
factor complex (FOS/FOSL1/JUN). The network analysis described in our ms. allows a basic 
reconstruction of the interactions of RAS pathway-modulated, up-regulated transcription factors and 
their contribution to phenotypic read-outs. This was our main objective.  Doing the analysis at the 
single cell level is an excellent suggestion for future work. We would envisage using Panomics in 
situ hybridization technology for detecting low-abundance mRNA in single cells. For protein 
analysis, immunohistochemical or immunofluorescence analysis would have to be established for all 
factors.  
 
The authors performed knockdown experiments for each of the seven TFs and then carried out 
expression profiling analysis to detect regulated genes. Indeed they found a number of genes that 
were deregulated upon knockdown of the individual transcription factors. Interestingly, the majority 
of these differentially expressed genes were deregulated by two or more of the seven transcription 
factors under investigation. This led the authors to conclude that KRAS-signaling would be 
regulated by a dense and connected signaling network. This conclusion could suggest that 
perturbations of the individual TFs might regulate some of the other selected TFs. Consequently, the 
abundance of all seven TF proteins was investigated in response to knockdowns by Western Blot. 
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And indeed, up- or down-regulation of the majority of the seven TFs was observed at RNA and/or 
protein levels.  
  
Since the experimental design had not been restricted to identifying directly regulated genes but 
could as well detect secondary events, the authors next tested their gene expression datasets for 
such genes that showed similar expression patterns as the selected TFs were affected by knockdown 
of either of the TFs at protein (Figure 3B) and RNA (Figure 3C) levels. This identified a number of 
947 probe sets that indeed displayed transcription patterns that were similar to the protein patterns 
of the individual TFs. This was indication of a direct regulation of these genes by the tested TFs.  
 
Reverse engineering of the network topology then helped to distinguish direct from indirect effects 
and provided a hierarchical organization of the transcription factors under investigation. While 
Gfi1, Otx1 and RelA should be located upstream in the network, the other TFs appeared to be acting 
further downstream not feeding back on Gfi1, Otx1 or RelA. An unexpected prediction of their 
model involved Fosl1 and Erk signaling, as the model suggested the TF to be destabilized by active 
Erk-signaling. (Remark: Erk signaling is commonly elevated temporarily upon addition of ligands 
or the application of stresses. How stable is the activation state in the steady state conditions of the 
experiments that are described?) This predicted effect of Erk-signaling on Fosl1 levels was in 
contrast to the literature, hence the authors tested their model in a Fosl1 overexpression system 
after addition of the U0126 Mek inhibitor. The resulting data demonstrated that the initial model 
was wrong in at least this interaction, and the model was consequently refined to take reference to 
the new data. The revised model was then further tested as the authors performed experiments 
interrogating phenotypes induced by the different perturbations (cell cycle phase, anchorage-
dependent and -independent growth, collective cell migration).  
 
Authors’ reply to remark on the stability of Erk activation: 
 
KRAS-transformed ROSE cells are stable transfectants. In general, normal precursor cells (e.g.  
NIH/3T3 cells) contain 500 fmol GDP-RAS and 1.3 fmol GTP-RAS. Levels rise up to 5000 fmol 
GDP-RAS and 2000 fmol GTP-RAS, respectively, in cells expressing mutant RAS due to multiple 
integrations of the transgene (cf. Robin Hesketh, The oncogene and tumor suppressor gene facts 
book, Academic Press 1997, p. 319ff). Hence, a strong and sustained Erk activation is achieved over 
many cell generations. In addition, we observed stable Erk activation in cells expressing mutant 
RAS controlled by an inducible promoter (cf. Lund et al., Oncogene 10, 4890-903 [2007]). 
 
 The authors had started from a larger number of TFs that are deregulated in a KRAS-transformed 
cell line model. They selected seven of the TFs and, driven by experimental data, generated a model 
that could predict the behavior of the individual TFs within a TF-interaction network. Most of the 
interactions had been known already before (literature). It would be interesting to see how many 
known interactions were not predicted/observed and could thus be false-negative interactions in the 
model (compare Figure 4A). Furthermore, in the future the authors might try to confirm some of the 
interactions that are predicted in Figure 4A panels 3 and 9.  
 
Authors’ reply: 
 We agree with the reviewer that a fair assessment of a reverse engineering algorithm should also 
address the false-negative rate. Therefore, we performed a systematic analysis addressing the 
reliability of our reverse engineering algorithm using benchmark models that have a similar size as 
the real data set (see also our response to Reviewer 2). The algorithm has a very high precision (> 
80%), but showed a considerably higher number of false-negatives. This is, in part, due to the fact 
that weak (and, hence, less important) interactions are removed from the model. Thus, even if an 
interaction exists in the network, it will not be ranked highly by the algorithm, if it does not strongly 
affect the fitting result. Another problem is that interactions reported in the literature are often 
specific to certain cell types / species. These interactions cannot a priori be assumed to be valid in 
the rat epithelial system we used in our work. For example, intensive crosstalk has been reported to 
occur between Akt and Erk signaling cascades, and the interactions were either positive, negative or 
absent, depending on the cell type and stimulation conditions. Therefore, the finding that our 
experiment and model failed to detect crosstalk between Akt and Erk does not contradict the 
existing reports in the literature.  
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A more detailed analysis of panels 3 and 9 (Fig. 4A) would indeed be of great interest for future 
studies. Panel 9 represents potential transcriptional feedback loops. In the current study, an in-depth 
analysis of such feedback was hindered by the poor annotation of rat microarrays. Thus, we could 
not easily derive hypotheses on the mechanisms by which the transcription factors affected Akt/Erk 
signaling. A detailed qPCR-based analysis of known transcriptional feedback regulators would be 
needed here. Panel 3 displays transcriptional interactions between transcription factors, and thus 
directly refers to the core transcription factor network. To provide proof-of-principle for 
demonstrating the power of an integrated functional and computational analysis of the transcription 
factor network downstream of the oncogenic RAS/MAPK signaling cascade, we restricted our 
analyses to seven transcription factors. It is indeed possible that some of the direct interactions (in 
the model) are in fact indirect in the cell (i.e. are mediated by transcription factors not considered in 
the model). It will be highly desirable to expand the model to all up-regulated transcription factors 
also considering chromatin-based (e.g. chromatin immunoprecipitation) and promoter assays.  
 
 Major points 
Why does the model shown in Figure 4C not show edges between pAkt and RelA, Otx1 or Hmga2? 
The data in Figure 1 and also the color code in Figure 3A suggests a strong regulation of Otx1 and 
Hmga2 by PI3K/Akt-signaling. This is somewhat contradictory to statements in the first paragraph 
of the Results part where regulation of Fosl1, Hmga2, Otx1, Klf6, Gfi1 and JunB is said to be 
strictly dependent on Raf/Mek/Erk signaling. Would acceptance of a coregulation of Otx1 and 
Hmga2 by Akt and MAPK signaling affect the model predictions?  
 
Authors’ reply: 
Regulation of RelA, Otx1 and Hmga2 by pAkt is necessary to match the experimental observations: 
PI3K inhibition affected RelA and Hmga2 proteins, while the corresponding mRNAs remained 
essentially unaffected (Fig. 1). The mRNA and protein levels of Otx1 coordinately responded to 
PI3K inhibition.  The model explains these effects by post-transcriptional regulation of RelA protein 
via pAkt. The regulation of the RelA protein by pAkt is indicated in Fig. 4A (box 4). Moreover, it is 
also visible in the scheme displayed in Fig. 4C (see the yellow box at the top-left of RelA protein).  
RelA in turn regulates the expression of Otx1 and Hmga2 in the model. In this way, pAkt can affect 
the levels of RelA protein and of its immediate neighbors Otx and Hmga2 in the model. In 
conclusion, the model shows the expected edges between pAkt and RelA, Otx1 or Hmga2. 
Therefore, the existing model predictions remain valid.  
 
The reviewer criticized that pAkt-mediated regulation of Otx1 and Hmga2 “is somewhat 
contradictory to statements in the first paragraph of the Results part, where regulation of Fosl1, 
Hmga2, Otx1, Klf6, Gfi1 and JunB is said to be strictly dependent on Raf/Mek/Erk signaling”. Here 
we mainly referred to regulation at the mRNA level. We still think that this claim holds true, but 
rephrased the corresponding paragraph on page 6 of the manuscript, distinguishing more carefully 
between regulation at the mRNA and protein levels.  
 
 
The legend for Figure 1 does not give the number of replicates that were generated. In the legend 
for Supplementary Fig. 1 (also in Supplementary Figure 4) the authors should state whether the 
indicated 'two independent experiments' were technical or biological replicate experiments. Ideally, 
two biological replicates with two technical replicates each should be carried out, since the 
reproducibility of quantitative Western Blotting is rather poor. How well did the individual TFs 
reproduce in the two experiments being mentioned? Since the entire model is based on this protein 
data a better description on the relibility of that data should be provided.  
 
Authors’ reply: The data represent 2 biological replicates.  Additional data have been up-loaded onto 
the site provided by MSB.  
  
Minor point 
Even if the rat Affymetrix arrays are not well annotated a mapping of probe sets onto genes should 
be done in order to test the reproducibility of results from two or more probe sets representing the 
same genes and to obtain a better idea on the numbers of genes that are up- or down-regulated in 
response to the perturbation experiments (in all, 7561 probe sets are said to represent 1757 genes). 
The numbers and identities of genes should be more relevant than probe numbers in the following, 
e.g., when the numbers of probe sets are given indicating up- or downregulation after TF 
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knockdown. For example, the authors should make clear on page 7 when they speak about '1,081 
(18%) of the transcription factor targets' when they refer to Figure 2D whether they mean probes or 
genes (I would assume they mean probe sets).  
 
Authors’ reply: 
In the revised manuscript we clarified that the numbers refer to probe sets, and included the number 
of genes that are represented by these probe sets in brackets, where appropriate. To estimate the 
number of target genes more reliably, we now used the xmapcore data base, which is known to 
provide an improved annotation superior to the annotation files provided by the microarray 
manufacturer. 
To assess reproducibility, we checked how often probe sets of one gene are assigned to one 
particular hybridization pattern. For the majority of genes represented by multiple probe sets, all 
regulated probe sets followed the same pattern. We added this finding to the results section (c.f. 
pages 7 and 8 for clarification of the relationship between probe sets and genes). 
  
  
Reviewer #2 (Remarks to the Author):  
  
This paper has significantly improved compared to its first submission. My main concern had been 
lack of overlap in the transcriptional patterns observed after perturbing TFs in the two network 
layers and a potential bias in only using at RAS-specific microarray. These concerns have been 
resolved. In my following comments I will concentrate on the authors' method and its presentation: 
It would strengthen the paper if the strength of evidence for each of the inferred edges could be 
quantified. Right now the graph in 4C is the model with the highest fit. Is there a way to use cross-
validation or bootstrapping to test how robust this model is? Correlation of predictions with left-out 
data would be a stronger evidence for the models power than correlation with the data used for 
fitting (Fig4B).  
 
 
Authors’ reply: 
Since we use a likelihood-based framework, we can apply the likelihood ratio test to quantify the 
evidence of each link. Therefore, we systematically removed each link and calculated the difference 
in likelihood, from which we derive a p-value for each edge. Cross-validation is not possible, since 
the model becomes non-identifiable on incomplete data sets, and the model parameters cannot be 
fitted. For example, the specific behavior of the transcription factor mRNA and protein species 
cannot be correctly inferred when only the mRNA measurements were used for fitting. Depending 
on the structure of the network, similar problems may even emerge when the mRNA measurements 
and a subset of the protein measurements are used for fitting.   
 
Before applying our method to the data, we characterized the robustness of our method by model 
fitting on simulated data of similar size as the real perturbation matrix.  We found that the precision 
was above 80% in the simulated networks. We also found that the false negative rate was 
substantially higher, such that our approach discovered mainly strong links and rarely detected weak 
links. Thus, the algorithm is relatively conservative. We also inspected the influence of noise and 
perturbation strength. Interestingly, the false positive rate is not sensitive, however, the sensitivity of 
the method increases if the data is less noisy, and if the perturbations are stronger. We added this 
information to the supplementary text and figures, and also added a summary of this analysis to the 
main text (page 11). 
 
The description of model construction and evaluation is not clear to me. In the key equation ((r-1)s - 
pR)2, what is s? what is p? If p is a vector, then pR should be a vector too, are you doing separate 
optimizations for rows of r^-1? I also do not understand the relationship between the Levenberg-
Marquardt algorithm (LMA) used to fit r and p, and the step wise approach desribed directly after 
that. Both optimization approaches lead to local, not necessarily global optima. Did the authors 
check different initializations for LMA? Would the step-wise procedure lead to a similar model as 
the one reported if it started from a random r matrix and added/deleted singel edges to improve fit?  
 
Authors’s reply: 
We fully agree that our algorithm may lead to local optima, because we combine a local parameter 
estimation algorithm (LMA) with greedy hill climbing (which scans the possible model topologies 
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using a local strategy). We initially tried to screen possible model topologies using randomly 
initialized network structure matrices. However, it is computationally not feasible to reliably find 
good fits in the space of possible model topologies.  
 
The parameter estimation for each model topology was done by LMA. We tested whether random 
initialization of the new parameter changed the result after an edge has been added. We found that 
the algorithm is robust towards initialisation of the parameter for the added link.  We fully agree 
with the reviewer that a global optimization strategy, or strategies such as MCMC may improve the 
method to better explore the structure and ensure that the global optimum is reached. This will be 
especially important for larger studies, and MCMC could be also used to quantify the evidence for 
each edge. We have revised the main text and Materials & Methods describing the algorithm (pages 
33 and 34), and added a more detailed description to the supplement. 
 
My goal is not to keep the authors busy with more and more simulations and changes to the 
algorithm. The paper looks very mature as it is. But the model construction is at the heart of this 
paper and I see a need to explain it better, including robustness and possible limitations.  
 
Authors’s reply: 
In the revised ms. we describe the robustness and limitation of the method due to its local 
optimization strategy (pages 10, 33 and 34).  
  
 
Reviewer #3 (Remarks to the Author):  
  
This very interesting manuscript has been substantially improved in its revised version. I am 
particularly impressed by the number of additional microarray assays and functional assays which 
have been included.  
The authors have fully responded to all the points raised in the previous revision. With regard to the 
unexpected posttranscriptional regulation of fosl1, the authors have refined the proposed model, on 
the basis of the novel experimental data now shown in figure 5.  
In addition, the authors have further validated the proposed hierarchical grouping of the two sets of 
transcription factors by cell migration along with 2D growth assays, as shown in figure 6.  
 
Authors’ reply: We couldn’t agree more. 
 
Corrigendum:  
When cross-checking the figures we realized that we had mistakenly presented the data related to 
the Fosl1 over-expression experiment (Fig. 5F). We corrected the figure accordingly. The correct 
data show that the rescue of Erk-dependent Hmga2 expression by Fosl1 over-expression is stronger 
than predicted by the model. The conclusion is that Fosl1 by itself has a negligible effect on Hmga2. 
 
We do hope that the current revision will now satisfy all reviewers’ comments and are very much 
looking forward to your final editorial decision. 
 
 
 
 
 Acceptance letter 29 June 2012 

 
Thank you again for sending us your revised manuscript. We are now satisfied with the 
modifications made and I am pleased to inform you that your paper has been accepted, in principle, 
for publication.  
 
Before we can send this work to production we have some relatively minor remaining issues and 
requests for modifications:  
 
1. In Fig. 1B, are the control GADPH lanes a repetition of the same gel image (they look very 
similar)? Experimentally, I think this would be entirely acceptable, but if they are the same repeated 
image this should be explained clearly in the figure legend. Indeed, if they are the same, I encourage 
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you to only show this control gel once to avoid any possible reader confusion, even if it makes the 
figure somewhat less symmetrical between the RT-PCR and the Western results.  
 
2. Regarding Fig. 5 & 6, journal policy discourages the display of error bars or standard deviations 
when there are only two independent replicates. I would suggest that you consider just plotting both 
values individually next to or on top of the bars.  
 
3. The current title is somewhat longer than our format requirements allow (max 100 characters, 
including spaces). The editor would like to suggest, "Reverse-engineering a hierarchical regulatory 
network downstream of oncogenic KRAS." This is only a suggestion, please feel free to select a title 
that you feel best represents this work.  
 
4. Each of the supplied figure source data files and supporting gel images needs to be linked directly 
to a particular figure panel or panels. I have attached a zip file with these files, please change the file 
names according to the following example "Additional data for figure 2B.txt", and then send the zip 
file back to us. We already assigned the gel images to what seemed to be the appropriate figure 
panels; please double-check these assignments.  
 
New files are be sent as attachments to reply email(s).  
 
 
Thank you very much for submitting your work to Molecular Systems Biology.  
 
Sincerely,  
Editor - Molecular Systems Biology  
msb@embo.org  
 
 
 
 
 
 


