Supporting Information

Roles of the Synergistic Reductive *O*-Methyltransferase GilM and of *O*-Methyltransferase GilMT in the Gilvocarcin Biosynthetic Pathway

Nidhi Tibrewal,¹ Theresa E. Downey,¹ Steven G. Van Lanen,¹ Ehesan Ul Sharif,² George A. O'Doherty² and Jürgen Rohr¹*

¹Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA. ²Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA.

jrohr2@email.uky.edu

Table of Contents

Section A: General Information	S 3
Section B: Synthesis of 1	S 4
3-Methoxy-5-methylbenzaldehyde (9)	S 4
3-Hydroxy-5-methylbenzaldehyde (10)	S5
2-(3-Methoxymethoxy-5-methylphenyl)-1,3-dioxane (11)	S5
2-(2-(1,3-dioxan-2-yl)-6-(methoxymethoxy)-4-methylphenyl)-5-hydroxy-1,4-napthaquinone (14)	e . S7
3-hydroxy-2-(5-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-5-methylbenzaldehyde (15)) . S 8
Section C: Expression and Purification of Enzymes	S 9
Section D: Cofactor Analysis of GilM	S 9
Figure 1. HPLC traces of the released cofactor	510
Section E: Kinetic Profile	510
GilMS	510
GilMTS	511
Section F: In Vitro Enzymatic Reactions	\$12
Enzymatic synthesis of 2-(5-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-3-methoxy-5- methylbenzaldehyde (5)	512
Enzymatic synthesis of defuco-pregilvocarcin M (6)	\$12
Enzymatic synthesis of demethyl-defuco-pregilvocarcin M (16)	\$14
Enzymatic synthesis of demethyl-defuco-gilvocarcin M (17)	\$14
Section G: Spectral Data	\$15
Section H: References	\$34
Section I: Overview of Compound Characterization Table	535

Section A: General Information

General Remarks: ¹H and ¹³C spectra were recorded using Agilent instruments (¹H frequencies 300, 400 and 500 MHz, corresponding ¹³C frequencies are 75, 100, 125 MHz, respectively). Chemical shifts are quoted in parts per million (ppm) relative to TMS. *J* values are recorded in Hz. A photodiode array detector (Waters 2996) along with a Micromass ZQ 2000 mass spectrometer (Waters Corporation) equipped with an electrospray ionization (ESI) probe was used to detect the molecular ions and analyze the compounds. 60-200 mesh silica gel was used for flash column chromatography. Thin layer chromatography was carried out using aluminum backed plates coated with silica gel. The plates were visualized under UV light at 254 NM and /or vanillin stain. R_f values were obtained by elution in the stated solvent ratios (v/v). All small-scale dry reactions were carried out under Nitrogen using standard syringe-septum technique.

Section B: Synthesis of 1

3-Methoxy-5-methylbenzaldehyde (9)¹**:** This was prepared in 3 steps.

To a magnetically stirred solution of the dimethyl anisole (500 mg, 3.68 mmol) in CCl₄ (40 mL) was added NBS (622 mg, 3.5 mmol) and benzoyl peroxide (10 mg). After refluxing for 1h, the reaction mixture was filtered and the filtrate was successively washed with aqueous HCl (3 N), saturated aqueous NaHCO₃, H₂O and brine. The organic layer was dried over Na₂SO₄ and the solvent was evaporated to give a residue that was purified on a silica gel column (30% CH₂Cl₂–hexane, R_f = 0.56) to furnish the bromide (70%).¹

To a stirred solution of the above bromide (2.15 g, 9.95 mmol) in acetone (60 mL) and H₂O (100 mL) was added NaHCO₃ (1.05 g, 12.5 mmol). The reaction mixture was refluxed for 4h then cooled to r.t. and extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue on a silica gel column (20% EtOAc–hexane, $R_f = 0.2$) furnished the alcohol (86%).¹

To a stirred suspension of pyridinium chlorochromate (2.0 g, 14.4 mmol) and silica gel (2.0 g) in anhydrous CH₂Cl₂ (10 mL) was added a solution of the above alcohol (1.3 g, 9.6 mmol) in CH₂Cl₂ (5 mL). After stirring the reaction mixture for 1h at r.t., it was filtered through a small silica gel column. The column was eluted with excess CH₂Cl₂ and the solvent was evaporated under reduced pressure to furnish the benzaldehyde¹ as oil (quant.) (40% CH₂Cl₂—hexane, $R_f = 0.45$). ¹H NMR (CDCl₃, 300 MHz) δ 9.90 (s, 1H), 7.25 (bs, 1H), 7.18 (bs, 1H), 6.97 (bs, 1H), 3.82 (s, 3H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 192.3, 160.1, 140.4, 137.7, 124.4, 122.2, 109.5, 55.6, 21.5.

3-Hydroxy-5-methylbenzaldehyde (10)²

1M BBr₃ in CH₂Cl₂ (6.6 mL, 6.6 mmol) was added dropwise to a stirred solution of **9** (500 mg, 3.3 mmol) in anhydrous CH₂Cl₂ (10 mL) under nitrogen at r.t. After stirring for 2h, 3 mL of each HCl and AcOH were added and reaction mixture was refluxed for 10h. The reaction was cooled, diluted with H₂O and extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄ and the solvent was evaporated to give a residue that was purified on silica gel (20% EtOAc-hexane, $R_f = 0.25$) to give deprotected derivative as yellowish solid in 60% yield. ¹H NMR (CD₃OD, 300 MHz) δ 9.76 (s, 1H), 7.09 (bs, 1H), 7.04 (bs, 1H), 6.87 (bs, 1H), 2.27 (s, 3H); ¹³C NMR (CD₃OD, 75 MHz) δ 194.2, 158.8, 141.4, 138.9, 123.5, 113.1, 54.7, 21.3.

2-(3-Methoxymethoxy-5-methylphenyl)-1,3-dioxane (11)³: This protected benzaldehyde was prepared in 2 steps.

(a) 2-(3-Hydroxy-5-methylphenyl)-1,3-dioxane³

A mixture of **10** (200 mg, 1.5 mmol), 1,3-propanediol (0.16 mL, 2.2 mmol) and TsOH.H₂O (6 mg, 0.03 mmol) in toluene was refluxed with the azeotropic removal of H₂O. After starting material was consumed completely, the reaction mixture was cooled and the solvent was removed under pressure to give a residue. The crude residue was purified on silica (EtOAc-hexane, $R_f = 0.32$) to give the protected aldehyde as a white solid in 75% yield. ¹H NMR (CDCl₃, 300 MHz) δ 6.84 (bs, 1H), 6.70 (bs, 1H), 6.49 (bs, 1H), 6.45 (bs, 1H), 5.39 (s, 1H), 4.27–4.21 (m, 2H), 3.99–3.92 (m, 2H), 2.22 (s, 3H), 2.20–2.14 (m,

1H), 1.44–1.38 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 155.7, 139.6, 139.4, 118.7, 116.8, 110.4, 101.7, 67.4, 25.8, 21.5; HRMS (+EI): Calc'd for C₁₁H₁₄O₃: 194.0943, observed: 194.0944.

(b) 2-(3-Methoxymethoxy-5-methylphenyl)-1,3-dioxane (11)³

To a stirred solution of the above phenyl acetal (165 mg, 0.85 mmol) and diisopropylethylamine (0.23 mL, 1.35 mmol) in anhydrous CH_2Cl_2 was dropwise added chloromethyl methyl ether (0.14 mL, 1.69 mmol) and the mixture was heated at 40 °C. After 24h, reaction mixture was washed with H_2O and brine. The combined organic layer was dried over Na₂SO₄ and the solvent was removed under vacuum to give MOM ether as colorless oil in 95% yield. ¹H NMR (CDCl₃, 300 MHz) δ 6.97 (bs, 1H), 6.82 (bs, 1H), 5.42 (s, 1H), 5.15 (s, 2H), 4.26–4.20 (m, 2H), 3.98–3.89 (m, 2H), 3.44 (s, 3H), 2.32 (s, 3H), 2.28–2.12 (m, 1H), 1.42–1.36 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 157.0, 139.8, 139.3, 120.1, 117.2, 110.8, 101.4, 94.2, 67.3, 55.9, 25.8, 21.5; HRMS (+EI): Calc'd for $C_{13}H_{18}O_4$: 238.1205, observed: 238.1204.

(2-(1,3-dioxan-2-yl)-6-(methoxymethoxy)-4-methylphenyl)tributylstannane (12)⁴

The above MOM ether (300 mg, 1.26 mmol) was co-evaporated twice with anhydrous toluene and was dissolved in freshly dried hexane (10 mL). At 0 °C, *n*-BuLi (0.6 mL, 2.5M in hexane, 1.5 mmol) was added and the mixture was stirred for 30 min. A white precipitate indicates the formation of lithiated species. After 30 min, *n*-Bu₃SnCl (0.5 mL, 1.89 mmol) was added and the mixture was further stirred for 30 min. It was then diluted with hexane-Et₂O (1:1, v/v), followed by addition of saturated aqueous NaHCO₃. The mixture was stirred at 0 °C for 30 min. After separation, the aqueous was extracted twice with hexane-Et₂O (1:1, v/v). The combined organic layer was washed with brine and dried over Na₂SO₄.

The solvent was removed under vacuum and the residue was subjected to purification on silica to give the required stannane (3% EtOAc-hexane, $R_f = 0.5$) as colorless oil (88%). ¹H NMR (CDCl₃, 300 MHz) 7.24 (bs, 1H), 6.90 (bs, 1H), 5.38 (s, 1H), 5.11 (s, 2H), 4.26-4.21 (bs, 2H), 3.99 (bs, 2H), 3.45 (s, 3H), 2.34 (s, 3H), 2.30-2.12 (m, 1H), 1.56-0.87 (m, 28H); δ ¹³C NMR (CDCl₃, 75 MHz) δ 161.9, 146.6, 140.3, 125.8, 120.6, 113.7, 102.5, 94.5, 67.4, 56.0, 29.4, 27.7, 26.0, 21.8, 14.0, 12.4; HRMS (ESI): Calc'd for [C₂₅H₄₄O₄Sn+H]⁺: 529.2339, observed: 529.2342.

2-(2-(1,3-dioxan-2-yl)-6-(methoxymethoxy)-4-methylphenyl)-5-hydroxy-1,4-napthaquinone (14)⁴

To a solution of 2-Bromo-8-hydroxy-1,4-naphthaquinone **13** (96 mg, 0.38 mmol), stannane **12** (200 mg, 0.38 mmol), and CuI (7.6 mg, 0.04 mmol) in THF (5 mL) was added a solution of $Pd_2(dba)_3$ •CHCl₃ (9.8 mg, 0.009 mmol) and PPh₃ (10.5 mg, 0.04 mmol) in THF (1 mL). The mixture was heated at 75 °C for 12h. The mixture was cooled to 0 °C and diluted with EtOAc (25 mL). Saturated aqueous NaHCO₃ (25 mL) was added and the mixture was stirred for 30 min. The layers were separated and the aqueous layer was extracted twice with EtOAc (50 mL). The combined organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under vacuum and the resulting residue was subjected to flash silica gel column chromatography to provide the coupled product (35% EtOAc-hexane, $R_f = 0.6$) as orange solid (75%). ¹H NMR (CDCl₃, 400 MHz) δ 12.33 (s, 1H), 7.80 (dd, J = 8.5, 7.5 Hz, 1H), 7.61 (dd, J = 7.5, 1 Hz, 1H), 7.39 (bs, 1H), 7.36 (dd, J = 8.5, 1 Hz, 1H), 7.18 (bs, 1H), 6.99 (s, 1H), 2.43 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 190, 5, 184.5, 162.5, 156.1, 147.5, 142.1, 138.7, 137.7, 137.3, 133.5, 126.4, 124.8, 124.7, 123.3, 119.2, 116.4, 21.1.

3-hydroxy-2-(5-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-5-methylbenzaldehyde (15)⁴

To 14 (60 mg, 0.14 mmol) in a 250 mL flask at r.t. was added a solution of concentrated HCl (2 mL) in 10 mL CH₃CN. The mixture was stirred for 4 min and then was quenched with NaHCO₃ (60 mL) followed by addition of EtOAc (50 mL). After separation of the layers, the aqueous layer was extracted with EtOAc twice. The combined organic layer was washed with brine, dried over Na₂SO₄ and the solvent was removed under vacuum. The resulting residue was subjected to purification by flash silica gel column chromatography to provide the desired product (35% EtOAc-hexane, R_f = 0.25) as orange solid (74%). ¹H NMR (acetone-d₆, 500 MHz) δ 12.06 (bs, 1H), 9.90 (s, 1H), 7.80 (dd, J = 8.5, 7.5 Hz, 1H), 7.61 (dd, J = 7.5, 1 Hz, 1H), 7.39 (bs, 1H), 7.36 (dd, J = 8.5, 1 Hz, 1H), 7.18 (bs, 1H), 6.99 (s, 1H), 2.43 (s, 3H); ¹³C NMR (acetone-d₆, 100 MHz) δ 193.0, 190.5, 184.5, 162.5, 156.1, 147.5, 142.1, 138.7, 137.7, 137.3, 133.5, 126.4, 124.8, 124.7, 123.3, 119.2, 116.4, 21.1; HRMS (+EI): Calc'd for C₁₈H₁₂O₅: 308.0685, observed: 308.0686.

Section C: Expression and Purification of Enzymes

*gil*M, *gil*MT and *gil*R genes were expressed using pET28a-expression constructs in *E. coli* BL21 (DE3) with *N*-terminal polyhistidine tag. A single colony was transferred to 10 mL LB supplemented with 50 μ g/mL kanamycin and grown at 37 °C and 250 rpm for 5h. Subsequently, 500 mL LB supplemented with 50 μ g/mL kanamycin was inoculated with 5 mL of the culture and was grown at 37 °C until OD600 reached to 0.5. Gene expression was induced with Isopropyl- β -D-1-thiogalactopyranoside (IPTG, 0.2 mM final concentration) and the culture was allowed to grow at 18 °C for 16h. The cell pellets were collected by centrifugation (4000 × g, 15 min) and were washed twice with 20 mL of lysis buffer (50 mM KH₂PO₄, 300 mM KCl, 10 mM imidazole, and pH 8.0). The cells were lysed using a French Press and the crude soluble enzyme fractions were collected through centrifugation (16000 × g, 1h). The crude enzymes were loaded onto Talon metal affinity resin (BD Biosciences) column and were washed thrice with lysis buffer. The enzymes were then eluted with elution buffer (50 mM KH₂PO4, 300 mM KCl, 250 mM imidazole, pH 8.0). The purified proteins were concentrated using an Amicon Ultra centrifugal filter (Millipore Corp.) and stored as 25% glycerol stocks at -20 °C. Concentrations of proteins were determined by the Bradford method using a calibration curve of the known concentrations of BSA. The concentrations for GilM, GilMT and GilR were found to be 6.7, 12.5 and 2.4 mg mL⁻¹ respectively.

Section D: Cofactor Analysis of GilM

GilM catalyzes reductive methylation without any external cofactor. However, the Blast analysis showed a very vague similarity to thiopurine-S-methyltransferases. To analyze any bound cofactor, the enzyme was boiled for 5 minutes and centrifuged (12000 ×g, 5 min). The supernatant was then subjected to LC-MS analysis. A linear gradient of acetonitrile and 0.1% formic acid-water (solvent A = 0.1% formic acid-H₂O; solvent B = acetonitrile; 0-15 min 25% B to 100% B; 16-24 min 100% B; 25-26 min 100% to 25% B; 27-29 min 25% B) with flow rate of 0.5 mL/min was used to separate the compounds in a Waters Symmetry C₁₈ (4.6 × 250 mm, 5µm) column. The supernatant showed UV-absorption at 260, typical of adenosine spectrum. To further verify presence of loosely bound Sadenosylmethionine, standard solution of S-adenosylmethionine was prepared in 50 mM phosphate buffer and was used in parallel for comparison. GilM was found to be co-purifying with S-adenosylmethionine.

Figure 1. HPLC traces of the released cofactor: (A) standard S-adenosylmethionine; (B) Cofactor released from GilM; (C) S-adenosylmethionine boiled for 5 min.

Section E: Kinetic Profile

GilM

A typical reaction mixture (50 μ M) composed of substrate (5), 50 mM phosphate buffer, 20 μ M enzyme (final concentration) was incubated at 25 °C. After 5 min reaction was extracted twice with EtOAc (300 μ l) and combined organic layers were dried under vacuum. The residue was then dissolved in 50 μ l acetonitrile and 20 μ l was injected onto HPLC following the protocol described in Section D. Amount of product formed was estimated by plotting the peak area in the standard calibration curve. The data resulting from incubating 7 different substrate concentrations with enzyme were fit to the Michael-Menten equation with nonlinear regression. k_{cat} and K_M values were calculated using GraphPad Prism 5.0. The analysis was done in triplicate and the average was taken.

GilMT

A typical reaction mixture (100 μ M) composed of substrate (**15**), 50 mM phosphate buffer, Sadenosylmethionine (excess), 13.7 μ M GilMT (final concentration) was incubated at 25 °C for 5–15 min to optimize the analysis condition. Kinetic profile for GilMT could not be generated due to solubility issues. The substrate concentration above 1 mM resulted in substrate precipitation while less enzyme concentration failed to produce substantial amount of product to be monitored by HPLC.

Section F: In vitro enzymatic reactions

Enzymatic synthesis of 2-(5-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-3-methoxy-5-methylbenzaldehyde (5)

An assay mixture (5 mL) composed of phosphate buffer (pH 6.5, 50 mM), substrate **15** (100 μ M), S-adenosylmethionine (excess), GilMT (10 μ M) was incubated at 30 °C for 12h. The reaction was extracted with EtOAc (2 × 10 mL). The organic solvent was dried at low pressure and the crude product was dissolved in CH₃CN. The product showed UV-absorbance at 420 and was purified through HPLC using the conditions as described in Section D. The reaction produced the desired methylated product in 40% yield. ¹H NMR (CDCl₃, 400 MHz) δ 12.03 (s, 1H), 9.85 (s, 1H), 7.64-7.60 (m, 2H), 7.33 (bs, 1H), 7.28 (dd, J = 7.5, 2 Hz, 1H), 7.05 (bs, 1H), 6.82 (s, 1H), 3.77 (s, 3H), 2.48 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 191.7, 190.2, 183.3, 161.5, 157.3, 147.5, 141.6, 137.1, 136.4, 135.8, 132.7, 125.7, 124.2, 119.8, 117.7, 115.6, 56.3, 21.8; HRMS (+EI): Calc'd for C₁₉H₁₄O₅: 322.0841, observed: 322.0850.

Enzymatic synthesis of defuco-pregilvocarcin M (6)

An assay mixture (1 mL) composed of phosphate buffer (pH 6.5, 50 mM), substrate **5** (100 μ M), S-adenosylmethionine (excess), GilM (8 μ M) was incubated at 30 °C for 4h. The reaction was extracted with EtOAc (2 × 2 mL). The organic solvent was dried at low pressure and the crude product was dissolved in CH₃CN. The cyclized product showed a sharp absorbance at 375 nm and was purified through HPLC (conditions as described in Section D). The reaction produced the desired product in 60% yield. HRMS (+EI): Calc'd for C₂₀H₁₈O₅: 338.1154, observed: 338.1160.

Position	¹ H NMR	Multiplicity (Hz)	HSQC
1-OH	9.43	S	
2	6.88	d (1)	113.6
3	7.38	dd (8.5, 7.5)	125.4
4	7.83	dd (8.5, 1)	
6	6.40	d (6.5)	93.1
6-OH	3.02	d (6.5)	
7	6.89	d (2)	119.4
8-CH ₃	2.41	S	21.8
9	6.86	bs	111.2
10-OCH ₃	3.97	S	56.0
11	8.04	S	103.6
12-OCH ₃	4.08	S	56.2

Table 1. ¹H and HSQC data for defuco-pregilvocarcinM (6) in CDCl₃ (500 MHz, relative to internal TMS, J in Hz).

Enzymatic synthesis of demethyl-defuco-pregilvocarcin M (16)

An assay mixture (50 µl) composed of phosphate buffer (pH 6.5, 50 mM), substrate **5** (0.8 µM), GilM (0.04 µM) was incubated at 30 °C for 5 min. The reaction was extracted with EtOAc (2 × 2 mL). The organic solvent was dried at low pressure and the crude product was dissolved in CH₃CN. The solution was injected onto HPLC (conditions described in Section D). The reaction produced the desired intermediate in 10 % yield. HRMS (ESI): Calc'd for $[C_{19}H_{16}O_5-H]^-$ 323.0919, observed: 323.0919.

Enzymatic synthesis of demethyl-defuco-gilvocarcin M (17)³

An assay mixture (100 µl) composed of phosphate buffer (pH 6.5, 50 mM), substrate **5** (2 µM), GilM (0.1 µM) and GilR (0.2 µM) was incubated at 30 °C for 1h. The reaction was extracted with EtOAc (2 × 2 mL). The organic solvent was dried at low pressure and the crude product was dissolved in CH₃CN. The solution was injected onto HPLC (conditions described in Section D). The reaction produced the desired product in 31 % yield. HRMS (+EI): Calc'd for C₁₉H₁₄O₅ 322.0841, observed: 322.0846.

Section G: Spectral Data

S15

S16

J20

S27

¹H NMR (CDCI₃, 400 MHz) 2-(5-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-3-methoxy-5-methylbenzaldehyde (5)

Section H: References

- 1) Srikrishna, A.; Ravikumar, P. C. Synthesis-Stuttgart 2007, 65.
- 2) Brown, P. M.; Thomson, R. H. J. Chem. Soc., Perkin Trans. 1, 1976, 997.
- 3) de Frutos, Ó.; Atienza, C.; Echavarren, A. M. Eur. J. Org. Chem. 2001, 163–171.
- 4) Shan, M.; Sharif, E. U.; O'Doherty, G. A. Angew. Chem. Int. Ed. 2010, 49, 9492.

Compound	Structure	¹ H	¹³ C	HRMS/	Previously Characterized	
		NMR	NMR			
				Elemental		
				Analysis		
Gilvocarcin V	OH OCH ₃	-	-	_	Yes	Hosova, T.:
(1)						Takashiro, E.:
(-)	$\begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} & & \\ & & \end{bmatrix}$					Matsumoto, T.:
	H ₃ C,OH					Suzuki, K. J. Am.
	HÖŢĹĹÓ					Chem. Soc. 1994 .
						116, 1004.
						,
Gilvocarcin M	OH OCH ₃	-	-	-	Yes	Hosoya, T.;
(2)	OCH ₃					Takashiro, E.;
						Matsumoto, T.;
						Suzuki, K. J. Am.
	CH ₃					Chem. Soc. 1994,
	ÓH Ű					<i>116</i> , 1004.
Preiadomycin	0 \sim CH ₂	_	_	_	Ves	Riv U · Wang
(3)	H,	_			103	C. C.; Chen, Y.
						H.; Lipata, F. M.;
	OH CH					Rix, L. L. R.;
						Greenwell, L. M.;
						Vining, L. C.; Vang K O :
						Rohr, J.
						Chembiochem
						2005 , <i>6</i> , 838.
4		-	-	-	Propose	d Intermediate
	СНО					
5	0 	✓	1	 ✓ 		No
	он о					

Section I: Compound Characterization

6	OH OH CH ₃ OH OCH ₃	1	HSQC	1		No
Defuco- gilvocarcin M (7)	O CH ₃ O CH ₃ O CH ₃ O CH ₃	-	-	-	Yes	Takemura, I.; Imura, K.; Matsumoto, T.; Suzuki, K. <i>Org.</i> <i>Lett.</i> 2004 , <i>6</i> , 2503.
8		-	-	-	Purchased from Scientific.	n Fisher
	Br	-	-	-	Yes	Srikrishna, A.; Ravikumar, P. C. Synthesis- Stuttgart 2007 , 65.
	HO	-	-	-	Yes	Srikrishna, A.; Ravikumar, P. C. Synthesis- Stuttgart 2007 , 65.
9	0	1	<i>✓</i>	-	Yes	Srikrishna, A.; Ravikumar, P. C. Synthesis- Stuttgart 2007 , 65.
10	OT	<i>✓</i>	<i>✓</i>	-	Yes	Brown, P. M.; Thomson, R. H. J. Chem. Soc. Perkin Trans. 1, 1976 , 997.

	O O O	✓	•	<i>√</i>	Yes	de Frutos, Ó.; Atienza, C.; Echavarren, A. M. <i>Eur. J. Org.</i> <i>Chem.</i> 2001 , 163.
11	OMOM 0 0	~	1	1	Yes	de Frutos, Ó.; Atienza, C.; Echavarren, A. M. <i>Eur. J. Org.</i> <i>Chem.</i> 2001 , 163.
12	OMOM SnBu ₃	~	1	•	Yes	Shan, M.; Sharif, E. U.; O'Doherty, G. A. Angew. Chem. Int. Ed. 2010, 49, 9492. 100
Bromojuglone (13)	O H O H O H	-	_	-	Yes	Kitani, Y.; Morita, A.; Kumamoto, T.; Ishikawa, T. <i>Helv. Chim.</i> <i>Acta</i> 2002 , <i>33</i> , 1186.
14	MOMO OH O OH O	√	1	-	Yes	Shan, M.; Sharif, E. U.; O'Doherty, G. A. Angew. Chem. Int. Ed. 2010, 49, 9492. 100
15	OH O	√	1	•	Yes	Shan, M.; Sharif, E. U.; O'Doherty, G. A. Angew. Chem. Int. Ed. 2010, 49, 9492. 100

16	OH OH OH OCH ₃ OH OH	-	-		No	_
17	O O O O O C H ₃ O O O C H ₃	-	-	•	Yes	de Frutos, Ó.; Atienza, C.; Echavarren, A. M. <i>Eur. J. Org.</i> <i>Chem.</i> 2001 , 163.