## **Supplementary Data**

Use of a mechanistic model to assess inter-individual and inter-species variability in active

## uptake in human and rat hepatocytes - Drug Metabolism and Disposition (DMD #46193)

## K. Ménochet, K.E. Kenworthy, J.B. Houston and A. Galetin

**Table S1:** Uptake clearance of 2  $\mu$ M estrone-3-sulfate and demographic information on 28 human hepatocyte donors. Data were collated from the characterization spreadsheet supplied by BD Gentest between September 2008 and September 2011

| Donor ID | Gender | Age (year) | Ethnicity        | Estrone-3-sulfate<br>uptake clearance<br>(µL/min/10 <sup>6</sup> cells) |
|----------|--------|------------|------------------|-------------------------------------------------------------------------|
| HH120    | Male   | 58         | Caucasian        | 17.5                                                                    |
| HH127    | Male   | 5          | Caucasian        | 13.5                                                                    |
| HH139    | Female | 47         | Caucasian        | 19.5                                                                    |
| HH145    | Male   | 69         | Caucasian        | 29.5                                                                    |
| HH157    | Female | 64         | Caucasian        | 4.45                                                                    |
| HH162    | Male   | 42         | African American | 27                                                                      |
| HH171    | Male   | 52         | Caucasian        | 35.5                                                                    |
| HH193    | Female | 3          | Native American  | 18                                                                      |
| HH202    | Male   | 0.9        | Hispanic         | 11.5                                                                    |
| HH206    | Female | 49         | Caucasian        | 31                                                                      |
| HH209    | Male   | 14         | Caucasian        | 27.5                                                                    |
| HH215    | Female | 0.01       | Caucasian        | 19.5                                                                    |
| HH222    | Female | 48         | Caucasian        | 12                                                                      |
| HH225    | Male   | 42         | Caucasian        | 24                                                                      |
| HH229    | Male   | 56         | Asian            | 30.5                                                                    |
| HH243    | Female | 32         | Caucasian        | 19.5                                                                    |
| HH263    | Male   | 2          | Caucasian        | 26.5                                                                    |
| HH266    | Female | 61         | Caucasian        | 23.5                                                                    |
| HH268    | Female | 54         | Caucasian        | 22.5                                                                    |
| HH269    | Male   | 23         | Caucasian        | 17.5                                                                    |
| HH293    | Female | 61         | Caucasian        | 32.5                                                                    |
| HH304    | Male   | 58         | Caucasian        | 16                                                                      |
| HH314    | Male   | 26         | African American | 23                                                                      |
| HH318    | Female | 64         | Caucasian        | 35                                                                      |
| HFC444   | Female | 53         | Caucasian        | 30                                                                      |
| HMC459   | Male   | 53         | Caucasian        | 14                                                                      |
| HFC463   | Female | 70         | Caucasian        | 4                                                                       |
| HFC473   | Female | 57         | Caucasian        | 14.5                                                                    |

| Drug         | CL <sub>tot</sub>  | CL <sub>r</sub>      | CL <sub>bile</sub>  | fup                |
|--------------|--------------------|----------------------|---------------------|--------------------|
|              | (mL/min/kg)        | (mL/min/kg)          | (mL/min/kg)         |                    |
| Bosentan     | 2.39 <sup>a</sup>  | 0.0215 <sup>a</sup>  | 0.0885 <sup>a</sup> | 0.02 <sup>b</sup>  |
| Pravastatin  | 13.5 <sup>c</sup>  | 6.3 <sup>c</sup>     | 3.04 <sup>d</sup>   | 0.554 <sup>e</sup> |
| Repaglinide  | 7.76 <sup>f</sup>  | $0.621^{\mathrm{f}}$ | ND                  | 0.036 <sup>g</sup> |
| Rosuvastatin | 11.6 <sup>h</sup>  | 3.24 <sup>h</sup>    | 3.12 <sup>h</sup>   | $0.12^{i}$         |
| Telmisartan  | 12.3 <sup>j</sup>  | $0^k$                | 12.0 <sup>k</sup>   | 0.005 <sup>j</sup> |
| Valsartan    | 0.521 <sup>1</sup> | 0.148 <sup>1</sup>   | 0.321 <sup>m</sup>  | 0.059 <sup>n</sup> |

Table S2: Literature data used for the comparison between observed and predicted hepatic clearance

**a:** Weber C, Gasser R, and Hopfgartner G (1999) Absorption, excretion, and metabolism of the endothelin receptor antagonist bosentan in healthy male subjects. Drug Metab Dispos 27:810-815.

**b:** Blanchard N, Alexandre E, Abadie C, Lave T, Heyd B, Mantion G, Jaeck D, Richert L, and Coassolo P (2005) Comparison of clearance predictions using primary cultures and suspensions of human hepatocytes. Xenobiotica 35:1-15.

**c:** Singhvi SM, Pan HY, Morrison RA, and Willard DA (1990) Disposition of pravastatin sodium, a tissue-selective HMG-CoA reductase inhibitor, in healthy subjects. Br J Clin Pharmacol 29:239-243.

**d:** Everett DW, Chando TJ, Didonato GC, Singhvi SM, Pan HY, and Weinstein SH (1991) Biotransformation of pravastatin sodium in humans. Drug Metab Dispos 19:740-748.

**e:** Watanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, and Sugiyama Y (2010) Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos 38:215-222.

**f:** Hatorp V, Oliver S, and Su CA (1998) Bioavailability of repaglinide, a novel antidiabetic agent, administered orally in tablet or solution form or intravenously in healthy male volunteers. Int J Clin Pharmacol Ther 36:636-641.

**g:** Marbury TC, Ruckle JL, Hatorp V, Andersen MP, Nielsen KK, Huang WC, and Strange P (2000) Pharmacokinetics of repaglinide in subjects with renal impairment. Clin Pharmacol Ther 67:7-15.

**h:** Martin PD, Warwick MJ, Dane AL, Hill SJ, Giles PB, Phillips PJ, and Lenz E (2003) Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin Ther 25:2822-2835.

i: Regulatory documents.

**j**: Stangier J, Su CA, and Roth W (2000) Pharmacokinetics of orally and intravenously administered telmisartan in healthy young and elderly volunteers and in hypertensive patients. J Int Med Res 28:149-167.

**k:** Stangier J, Schmid J, Turck D, Switek H, Verhagen A, Peeters PA, van Marle SP, Tamminga WJ, Sollie FA, and Jonkman JH (2000) Absorption, metabolism, and excretion of intravenously and orally administered [14C]telmisartan in healthy volunteers. J Clin Pharmacol 40:1312-1322.

**l:** Flesch G, Muller P, and Lloyd P (1997) Absolute bioavailability and pharmacokinetics of valsartan, an angiotensin II receptor antagonist, in man. Eur J Clin Pharmacol 52:115-120.

**m:** Waldmeier F, Flesch G, Muller P, Winkler T, Kriemler HP, Buhlmayer P, and De Gasparo M (1997) Pharmacokinetics, disposition and biotransformation of [14C]-radiolabelled valsartan in healthy male volunteers after a single oral dose. Xenobiotica 27:59-71.

**n:** Colussi DM, Parisot C, Rossolino ML, Brunner LA, and Lefevre GY (1997) Protein binding in plasma of valsartan, a new angiotensin II receptor antagonist. J Clin Pharmacol 37:214-221.

**Figure S1** Formation of M1 (O), M2 ( $\bullet$ ), M4 ( $\Box$ ) and repaglinide glucuronide ( $\blacksquare$ ) in human hepatocytes over 15 min at a range of concentrations (0.1 - 100 µM). Metabolite concentrations were monitored in the cells. Data points represent the mean of duplicate measurements carried out in donor HU8089. A comparable profile was observed in donor HU4199.



**Figure S2:** Representative uptake kinetic profiles after 2 min incubation for seven OATP substrates over a range of substrate concentrations based on the mechanistic modeling approach. Total uptake was obtained from measurements at 37°C. Active transport and passive diffusion were delineated from Equation 2. Active uptake was expressed as the difference between total uptake and passive diffusion. Closed symbols and solid lines represent measured and predicted total uptake estimated from kinetic parameters obtained with each approach, respectively. Dashed and dotted lines represent cellular uptake due to active transport and passive diffusion, respectively. Data points are mean of duplicate measurements.





**Figure S3:** Predicted and observed rosuvastatin (A) and repaglinide (B) cell concentrations when data were analyzed using a mechanistic two-compartment. Each plot represents cell concentrations measured in three experiments, over a range of concentrations (0.1 - 100  $\mu$ M), in incubations carried out over 2 min for rosuvastatin and 15 min for repaglinide.



**Figure S4:** Relationship between uptake of estrone-3-sulfate, measured in 28 human hepatocyte donors and age and gender of the donors. Data were collated from BD Gentest characterization spreadsheets. Uptake was measured at 2  $\mu$ M, over 3 min with 200,000 suspended hepatocytes per incubation. Open symbols are for females, closed symbols for males.

