Appendix II. Corpora annotation details

The coreference annotation task involves linking pairs of concept mentions that relate through an identity relationship. Coreference chains are generated by applying the transitivity rule to linked pairs.

Annotation Tasks for the 2011 i2b2/VA Challenge

The 2011 i2b2/VA challenge built on the problem, test, and treatment concept mentions annotated in 2010 i2b2/VA challenge and augmented these categories with person and pronoun categories. Person category included proper names, personal pronouns, and names of groups of people. The pronoun category included non-person pronouns.

Annotation Guidelines, Schema and Tool

i2b2/VA coreference annotation guidelines were based on the ODIE guidelines.¹ The i2b2/VA corpus was annotated over a seven month period, through the combined efforts of 23 annotators. Eleven of these annotators were clinicians; 12 were non-clinicians. All annotators were trained for 1.5-2.5 hours on the annotation guidelines and the annotation tool before starting annotation.

Annotator Agreement Metrics

We measured the inter-annotator agreement (IAA) on coreference pairs, given concept mentions, using the formula:²

$$IAA = \frac{2*Matches}{(2*Matches + Non - Matches)}$$

where Matches correspond to agreements and Non-Matches correspond to disagreements.

Evaluation metrics were computed by constructing a 2x2 table for each individual category. Overall IAA are micro-averaged across all classes for concept level IAA, and across all relations for coreference pair IAA (see Table 3).

$$IAA_Micro_Average = \frac{\sum_{i=1}^{M} 2*Matches_{i}}{\sum_{i=1}^{M} (2*Matches_{i} + Non - Matches_{i})}$$

where *M* is the total number of classes.

We limited IAA analysis to pairs, in order to measure the reliability of the manual linking task; chains were automatically generated from pairs and were therefore excluded from IAA analysis. These metrics differ from those used to assess system performance of 2011 i2b2/VA challenge submissions in three important ways. First, these agreement metrics represent the independent human annotation task on raw documents where ground truth concepts for problems, treatments, and tests were provided to annotators. Annotators identified and marked mentions of persons and were allowed to modify pre-annotated pronoun annotations. Annotators were also encouraged to report on incorrect problem, test, treatment annotations for potential curation. Second, annotators followed a procedure that involved a minimal amount of effort to link anaphor-antecedent pairs and to create coreference chains. Third, these metrics differ from system evaluation metrics since they are geared towards evaluating manual annotation tasks.

Common Sources of Annotators Disagreement

From a qualitative perspective there were four common sources of disagreement between annotators for the 2011 coreference annotation task. These included: 1) problems related to use of the annotation tool and the visualization of overlapping mentions; 2) overlinking; 3) underlinking; and 4) chaining of unrelated entities. In the first case, reuse of the 2010 i2b2 corpus that contained overlapping mention annotations that included articles and pronouns were difficult to visualize using the annotation tool. For example, where the entire noun phrase "her fever" is marked as a problem, the pronoun "her" may be missed by the annotator. Overlinking of mentions often occurred in situations where a temporal relationship between distinct events existed. For example, "temp" and "temperature" in "Temp on admit was 102" and "her temperature today had lowered to 99" are separate events and are not coreferential. However, the definition of a distinct event was subjective and often left up to the annotator to determine. Our guidelines specifically defined excluding set-subset or part-whole coreferential relationships, but there was often gray area that was subjective despite our attempts to clearly define and explicate inclusions and exclusions. Underlinking also occurred in situations where annotators lacked sufficient medical knowledge or a coreferential relationship was not obvious due to nuances of the medical sublanguage used to describe the same entity or in situations where an acronym could not be disambiguated. This type of situation occurred frequently for problems, treatments, and tests. It is not uncommon, for example, for a provider to document the presence of a medical device, medication, a test, or problem using some generic form, or use an acronym or short form

that refers to the same entity. For example, consider the sentence "patient reports with subgleal bleed and a subdural bleed". Later in the same document there is mention of [the bleed] causing "midline shift", which may only be a result of subdural bleeding. Surprisingly, both clinician and non-clinician annotators struggled with this particular issue and a certain degree of subjectivity was required in these kinds of situations. Underlinking was also more common in longer documents where it was more difficult for the annotators to recall information and make coreferential links across an entire document.

One final problem that occurred less often included inappropriate chaining of unrelated mentions. In these cases annotators could inadvertently include unrelated mentions in the same chain. For example, annotators linked [liver cancer] to [cancer]; they also linked [breast cancer] to [cancer]. Since we used automatic methods for creating chains out of mention pairs, this could result in [liver cancer] and [breast cancer] inadvertently ending up in the same chain.

Appendix III. Evaluation metrics for mention extraction

Following the evaluation methodology of the fourth i2b2 challenge,³ we evaluated mention extraction using the precision (P), recall (R), and F-measure (F) metrics. These metrics are computed based on the true positives (TPs), false positives (FPs), and false negatives (FNs) retrieved by a system. We defined the TP, FP, and FN differently for mentions that exactly overlapped the gold standard mentions (i.e., exact overlap), and for mentions that at least partially overlapped the gold standard mentions (i.e., at least partial overlap).

For exact overlap, we defined TP, FP, and FN as:

- TP: system mention annotation exactly agreed with gold standard mention annotation, in both token offset and semantic category.
- FP: system mention annotation did not exactly agree with gold standard annotation, in either token offset or semantic category.
- FN: gold standard annotation did not exactly agree with system mention annotation, in either token offset or semantic category.

For at least partial overlap we defined TP, FP, and FN as:

- TP: system mention annotations for token offset partially overlapped the gold standard mention annotation. The system mention annotation for semantic category exactly agreed with the gold standard mention annotation.
- FP: system mention annotation for token offset did not overlap with the gold standard annotation, or the system mention annotation for semantic category did not exactly agree with the gold standard mention annotation.
- FN: gold standard mention annotation for token offset did not overlap with the system annotation, or the gold standard mention annotation for semantic category did not exactly agree with the system mention annotation.

References:

1. Savova G, Chapman WW, Zheng J, *et al.* Anaphoric relations in the clinical narrative: corpus creation. Journal of American Medical Informatics Association 2011;18:459-65.

2. Roberts A, Gaizauskas R, Hepple M, *et al.* Building a semantically annotated corpus of clinical texts. Journal of Biomedical Informatics 2009;42:950-66.

3. Uzuner O, South B, Shen S, *et al.* 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical texts. Journal of American Medical Informatics Association 2011;18:552-56.

Number	Author name	Task	Participating Organization	Country		
1	Anick et al.	Task 1C	Brandeis University	U.S.		
2	Benajiba et al.	Task 1B, 1C	Philips Research North America	U.S.		
3	Cai et al.	Task 1A, 1B, 1C	A, 1B, 1C Heidelberg Institute for Theoretical Studies gGmbH			
4			Academia Sinica			
	Dai et al.	Task 1C	Yuan Ze University	Taiwan		
			National Tsing Hua University	†		
5	Glinos	Task 1B, 1C	Advanced Text Analytics, LLC	U.S.		
6	Gooch	Task 1B, 1C	Centre for Health Informatics, City University	England		
7	Crowin et al	Teels 1A 1D 1C	LIMSI-CNRS	Energy		
	Grouin et al.	1ask 1A, 1B, 1C	Universite Paris-Sud	France		
8	Guillen	Task 1C	California State University San Marcos	U.S.		
9	Hinote et al.	Task 1B, 1C	University of Houston - Downtown	U.S.		
10	Jindal et al.	Jindal et al. Task 1C University of Illinois at Urbana-Champagne		U.S.		
11	Townsloos data at al	Teels 1C	Mayo Clinic	U.S.		
	Jonnalagadda et al.	Task IC	Georgetown University			
12	Lan et al.	Task 1A, 1B, 1C	East China Normal University	China		
13	Patrick et al.	Task 1C	University of Sydney	Australia		
14	Rink et al.	Task 1B, 1C	University of Texas Dallas	U.S.		
15	Wang et al.	Task 1C	Arizona State University	U.S.		
16	Wara at al	Tools 1C	West Virginia University	U.S.		
	wale et al.	Task IC	Medquist			
17	Weissenbacher et al.	Task 1C	Toyota Technology Institute, Japan	Japan		
18			Microsoft Research Asia			
	Vu at al	Teels 1C	Beihang University	China		
	Au ci al.	Task IC	Tsinghua Univesrity	Ciina		
			Shanghai Jiaotong University			
19	Yan et al.	Task 1C	Harbin Institute of Technology	China		
20	Vang et al	Task 1C	Open University	England		
			Lero, University of Limerick	Ireland		

Table 1: 2011 i2b2/VA challenge participants

IAA Mention Extraction												
	BIDMC		Р	H	UP Discl	MC harge	UP Proș	MC gress	UP Disch Pro	MC arge & gress	То	otal
		At		At		At		At		At		At
		least		least		least		least		least		least
	Exact	partial	Exact	partial	Exact	partial	Exact	partial	Exact	partial	Exact	partial
Problem	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1	1
Person	0.85	0.90	0.95	0.97	0.89	0.94	0.84	0.91	0.87	0.93	0.9	0.94
Pronoun	0.96	0.96	0.97	0.97	0.96	0.96	0.95	0.95	0.96	0.96	0.96	0.96
Test	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1	1
Treatment	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1	1
Overall	0.98	0.98	0.98	0.99	0.96	0.97	0.95	0.97	0.96	0.97	0.97	0.98

Table 2: Inter-annotator	agreement results
--------------------------	-------------------

	IAA Coreference Resolution											
	BIDMC		BIDMC PH		UPMC Discharge		UPMC Progress		UP			
	Exact	At least partial	Exact	At least partial	Exact	At least partial	Exact	At least partial	Exac			
Problem	0.65	0.65	0.64	0.64	0.72	0.72	0.59	0.59	0.67			
Person	0.79	0.84	0.91	0.92	0.84	0.87	0.72	0.80	0.79			
Pronoun	0.65	0.66	0.44	0.44	0.59	0.60	0.51	0.53	0.57			
Test	0.36	0.36	0.44	0.45	0.38	0.39	0.41	0.41	0.40			
Treatment	0.49	0.49	0.54	0.54	0.58	0.58	0.68	0.68	0.62			
Overall	0.66	0.68	0.80	0.81	0.77	0.79	0.67	0.73	0.73			

	At least partial overlap			Exact overlap			
	Р	R	F	Р	R	F	
Lan et al.	0.832	0.661	0.737	0.728	0.579	0.645	
Grouin et al.	0.692	0.789	0.737	0.584	0.667	0.623	
Cai et al.	0.518	0.571	0.544	0.450	0.496	0.472	

Table 3: Task 1A mention extraction evaluation using precision, recall, and F-measure on at least partial and exact mention overlap

•	At least par	tial overlap	Exact overlap		
	Lan et al.	Cai et al.	Lan et al.	Cai et al.	
Grouin et al.	0.189	0.01	0.267	0.01	
Lan et al.		0.01		0.01	

Table 4: Statistical significance results for teams participating in Task 1A. Only the upper diagonal is marked with the p-value results.

	Rink et	Cai et	Grouin	Hinote	Lan et	Gooch	Benajiba
	al.	al.	et al.	et al.	al.	Gooch	et al.
Glinos	1	1	0.01	0.01	0.01	0.01	0.01
Rink et							
al.		1	0.01	0.01	0.01	0.01	0.01
Cai et al.			0.01	0.109	0.01	0.01	0.01
Grouin et							
al.				0.02	1	0.01	0.03
Hinote et							
al.					0.089	0.505	0.99
Lan et al.						0.01	1
Gooch							1

Table 5: Statistical significance results for teams participating in Task 1B. Only the upper diagonal is marked with the p-value results.