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Appendices

A Distance dependant penalty
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B Graph metric definitions

Participation index
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where M is the set of modules obtained by the [1] method, ki is the number of edges connected to
node i and ki(m) is the number of links originating at node i which finish within module m.

Characteristic path length

Characteristic path length of the network [2].
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Local efficiency

Local efficiency of the network [3].
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Global efficiency

Global efficiency of the network [3].
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Clustering coefficient

Clustering coefficient of the network [2].
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Betweenness centrality

Betweenness centrality of node i [4].
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Small worldness

Small world index [5]
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C Groupwise modular structure

Table 1: Modular structure identified at a groupwise level

Region Module
Amygdala R Inferior occipital
Calcarine L Inferior occipital
Calcarine R Inferior occipital
Cuneus L Inferior occipital
Cuneus R Inferior occipital
Hippocampus L Temporal
Hippocampus R Temporal
ParaHippocampal L Temporal
ParaHippocampal R Temporal
Occipital Inf R Temporal
Fusiform L Temporal
Fusiform R Temporal
Temporal Mid R Temporal
Temporal Pole Mid L Temporal
Frontal Sup L Frontal/Occipital
Frontal Sup R Frontal/Occipital

Continued on next page
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Table 1 – Continued from previous page

Region Module
Frontal Sup Orb L Frontal/Occipital
Frontal Sup Orb R Frontal/Occipital
Frontal Mid L Frontal/Occipital
Frontal Mid R Frontal/Occipital
Frontal Mid Orb L Frontal/Occipital
Frontal Mid Orb R Frontal/Occipital
Frontal Inf Orb L Frontal/Occipital
Frontal Inf Orb R Frontal/Occipital
Olfactory L Frontal/Occipital
Olfactory R Frontal/Occipital
Rectus L Frontal/Occipital
Rectus R Frontal/Occipital
Lingual L Frontal/Occipital
Lingual R Frontal/Occipital
Occipital Sup L Frontal/Occipital
Occipital Sup R Frontal/Occipital
Occipital Mid L Frontal/Occipital
Occipital Mid R Frontal/Occipital
Occipital Inf L Frontal/Occipital
Caudate L Frontal/Occipital
Caudate R Frontal/Occipital
Temporal Pole Sup L Frontal/Occipital
Temporal Pole Sup R Frontal/Occipital
Temporal Mid L Frontal/Occipital
Temporal Pole Mid R Frontal/Occipital
Temporal Inf L Frontal/Occipital
Temporal Inf R Frontal/Occipital
Medial Prefront lower L Frontal/Occipital
Medial Prefront upper L Frontal/Occipital
Medial Prefront upper R Frontal/Occipital
Rostral ACC bilateral Frontal/Occipital
Pregenual ACC bilateral Frontal/Occipital
Dorsal ACC bilateral Frontal/Occipital
Precentral L Parietal premotor
Precentral R Parietal premotor
Frontal Inf Oper L Parietal premotor
Frontal Inf Oper R Parietal premotor
Frontal Inf Tri L Parietal premotor
Frontal Inf Tri R Parietal premotor
Rolandic Oper L Parietal premotor
Rolandic Oper R Parietal premotor
Supp Motor Area L Parietal premotor
Supp Motor Area R Parietal premotor
Amygdala L Parietal premotor
Postcentral L Parietal premotor
Postcentral R Parietal premotor
Parietal Sup L Parietal premotor

Continued on next page



4

Table 1 – Continued from previous page

Region Module
Parietal Sup R Parietal premotor
Parietal Inf L Parietal premotor
Parietal Inf R Parietal premotor
SupraMarginal L Parietal premotor
SupraMarginal R Parietal premotor
Precuneus L Parietal premotor
Paracentral Lobule L Parietal premotor
Paracentral Lobule R Parietal premotor
Putamen L Parietal premotor
Putamen R Parietal premotor
Pallidum L Parietal premotor
Pallidum R Parietal premotor
Heschl L Parietal premotor
Heschl R Parietal premotor
Temporal Sup L Parietal premotor
Temporal Sup R Parietal premotor
Ant Insula L Parietal premotor
Ant Insula R Parietal premotor
Post Insula L Parietal premotor
Post Insula R Parietal premotor
Posterior MCC bilateral Parietal premotor
23d bilateral Parietal premotor
Frontal Mid Orb L Prefrontal
Frontal Mid Orb R Prefrontal
Angular L Prefrontal
Angular R Prefrontal
Precuneus R Prefrontal
Thalamus L Prefrontal
Thalamus R Prefrontal
Medial Prefront lower R Prefrontal
dPCC bilateral Prefrontal
vPCC bilateral Prefrontal

D Group modularity identification

Simultaneous identification of the optimal modular decompositions is a two phase process. First the
landscape for each individual is restricted to only decompositions that maximally overlap the typical
decomposition of at least one other member of the group. The typical landscape for an individual is
defined by the mode of the landscape for that subject.

The first pass landscape filter can be described as:

l ← ∅
for i = 1 : n do
maxj ← 0
for j = 1 : m do
if q > maxj then
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maxj ← q
end if

end for
if maxj /∈ l then
append maxj to l

end if
end for

where l is a list of all surviving decompositions for the subject, q is the goodness of fit between two
decompositions, n is the number of decompositions in the landscape and m is the number of subjects in
the group.

The second pass recursively finds the best matching pairs of modular decompositions, removes all
other possibilities for those subjects and creates a typical decomposition for the combined subjects for
which everything is compared to in future comparisons.
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