Changes in community structure of resting state brain networks in unipolar depression

Supplementary equations

Anton Lord^{1,2,*}, Dorothea Horn^{3,4}, Michael Breakspear^{1,5,6,7}, Martin Walter^{3,4,8}

[1]Division of Mental Health Research, Queensland Institute of Medical Research, Brisbane, QLD, Australia

[2]University of Queensland, St Lucia, QLD, 4001, Australia

[3]Clinical Affective Neuroimaging Laboratory, Leibnitz Institute for Neurobiology,

Brenneckestrasse 6, 39120 Magdeburg

[4]Departments of Psychiatry and Neurology, Otto v. Guericke University, Leipziger Strasse 44, 39120 Magdeburg

[5]School of Psychiatry, University of New South Wales

[6] The Black Dog Institute, Sydney, NSW, Australia

[7] The Royal Brisbane and Womans Hospital, Brisbane, QLD, Australia

[8]Center for Behavioral and Brain Sciences (CBBS), Magdeburg, Germany

 \ast E-mail: antonL@qimr.edu.au

Appendices

A Distance dependant penalty

$$w_{adj} = w \frac{-\log\left(x\right) + k}{k} - r$$

B Graph metric definitions

Participation index

$$y_i = 1 - \sum_{m \in M} \left(\frac{k_i(m)}{k_i}\right)^2 \tag{1}$$

where M is the set of modules obtained by the [1] method, k_i is the number of edges connected to node i and $k_i(m)$ is the number of links originating at node i which finish within module m.

Characteristic path length

Characteristic path length of the network [2].

$$L^{w}\frac{1}{n}\sum_{i\in n}\frac{\sum_{j\in N, j\neq i}d^{w}_{ij}}{n-1}$$

$$\tag{2}$$

Local efficiency

Local efficiency of the network [3].

$$E_{loc}^{w} = \frac{1}{2} \sum_{i \in N} \frac{\sum_{j,h \in N, j \neq i} \left(w_{ij} w_{ih} \left[d_{jh}^{w} \left(N_{i} \right) \right]^{-1} \right)^{3}}{k_{i} \left(k_{i} - 1 \right)}$$
(3)

Global efficiency

Global efficiency of the network [3].

$$E = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} \left(d_{ij}^w \right)^{-1}}{n - 1}$$
(4)

Clustering coefficient

Clustering coefficient of the network [2].

$$C = \frac{1}{n} \sum_{i \in N} \frac{2t_i^w}{k_i (k_i - 1)}$$
(5)

Betweenness centrality

Betweenness centrality of node i [4].

$$b_{i} = \frac{1}{(n-1)(n-2)} \sum_{h,j \in N, h \neq j, h \neq i, j \neq i} \frac{p_{h}j(i)}{p_{hj}}$$
(6)

Small worldness

Small world index [5]

$$S = \frac{C/C_{rand}}{L/L_{rand}} \tag{7}$$

C Groupwise modular structure

Table 1:	Modular	$\operatorname{structure}$	identified	at a	groupwise	level

Region	Module		
Amygdala_R	Inferior occipital		
Calcarine_L	Inferior occipital		
Calcarine_R	Inferior occipital		
Cuneus_L	Inferior occipital		
Cuneus_R	Inferior occipital		
Hippocampus_L	Temporal		
Hippocampus_R	Temporal		
ParaHippocampal_L	Temporal		
ParaHippocampal_R	Temporal		
$Occipital_Inf_R$	Temporal		
Fusiform_L	Temporal		
Fusiform_R	Temporal		
$Temporal_Mid_R$	Temporal		
Temporal_Pole_Mid_L	Temporal		
Frontal_Sup_L	Frontal/Occipital		
Frontal_Sup_R	Frontal/Occipital		

Continued on next page

Region Module Frontal_Sup_Orb_L Frontal/Occipital Frontal_Sup_Orb_R Frontal/Occipital Frontal_Mid_L Frontal/Occipital Frontal_Mid_R Frontal/Occipital Frontal/Occipital Frontal_Mid_Orb_L Frontal_Mid_Orb_R Frontal/Occipital Frontal_Inf_Orb_L Frontal/Occipital Frontal/Occipital Frontal_Inf_Orb_R Frontal/Occipital Olfactory_L Frontal/Occipital Olfactory_R Rectus_L Frontal/Occipital Rectus_R Frontal/Occipital Frontal/Occipital Lingual_L Lingual_R Frontal/Occipital Occipital_Sup_L Frontal/Occipital Occipital_Sup_R Frontal/Occipital Frontal/Occipital Occipital_Mid_L Occipital_Mid_R Frontal/Occipital Occipital_Inf_L Frontal/Occipital Caudate_L Frontal/Occipital $Caudate_R$ Frontal/Occipital Temporal_Pole_Sup_L Frontal/Occipital Frontal/Occipital Temporal_Pole_Sup_R $Temporal_Mid_L$ Frontal/Occipital Frontal/Occipital Temporal_Pole_Mid_R Temporal_Inf_L Frontal/Occipital Temporal_Inf_R Frontal/Occipital Frontal/Occipital Medial_Prefront_lower_L Frontal/Occipital Medial_Prefront_upper_L Medial_Prefront_upper_R Frontal/Occipital Frontal/Occipital Rostral_ACC_bilateral Pregenual_ACC_bilateral Frontal/Occipital Dorsal_ACC_bilateral Frontal/Occipital Precentral_L Parietal premotor Precentral_R Parietal premotor Frontal_Inf_Oper_L Parietal premotor Frontal_Inf_Oper_R Parietal premotor Frontal_Inf_Tri_L Parietal premotor Frontal_Inf_Tri_R Parietal premotor Rolandic_Oper_L Parietal premotor Rolandic_Oper_R Parietal premotor Supp_Motor_Area_L Parietal premotor Supp_Motor_Area_R Parietal premotor Amygdala_L Parietal premotor Postcentral_L Parietal premotor Postcentral_R Parietal premotor Parietal_Sup_L Parietal premotor

Table 1 – Continued from previous page

Continued on next page

•				
Region	Module			
Parietal_Sup_R	Parietal premotor			
Parietal_Inf_L	Parietal premotor			
Parietal_Inf_R	Parietal premotor			
SupraMarginal_L	Parietal premotor			
SupraMarginal_R	Parietal premotor			
Precuneus_L	Parietal premotor			
Paracentral_Lobule_L	Parietal premotor			
Paracentral_Lobule_R	Parietal premotor			
Putamen_L	Parietal premotor			
Putamen_R	Parietal premotor			
Pallidum_L	Parietal premotor			
Pallidum_R	Parietal premotor			
Heschl_L	Parietal premotor			
Heschl_R	Parietal premotor			
Temporal_Sup_L	Parietal premotor			
Temporal_Sup_R	Parietal premotor			
Ant_Insula_L	Parietal premotor			
Ant_Insula_R	Parietal premotor			
Post_Insula_L	Parietal premotor			
Post_Insula_R	Parietal premotor			
Posterior_MCC_bilateral	Parietal premotor			
23d_bilateral	Parietal premotor			
Frontal_Mid_Orb_L	Prefrontal			
Frontal_Mid_Orb_R	Prefrontal			
Angular_L	Prefrontal			
Angular_R	Prefrontal			
Precuneus_R	Prefrontal			
Thalamus_L	Prefrontal			
Thalamus_R	Prefrontal			
Medial_Prefront_lower_R	Prefrontal			
dPCC_bilateral	Prefrontal			
vPCC_bilateral	Prefrontal			

Table 1 – Continued from previous page

D Group modularity identification

Simultaneous identification of the optimal modular decompositions is a two phase process. First the landscape for each individual is restricted to only decompositions that maximally overlap the typical decomposition of at least one other member of the group. The typical landscape for an individual is defined by the mode of the landscape for that subject.

The first pass landscape filter can be described as:

 $\begin{array}{l} l \leftarrow \emptyset \\ \textbf{for } i = 1:n \ \textbf{do} \\ max_j \leftarrow 0 \\ \textbf{for } j = 1:m \ \textbf{do} \\ \textbf{if } q > max_j \ \textbf{then} \end{array}$

```
max_{j} \leftarrow q
end if
end for
if max_{j} \notin l then
append max_{j} to l
end if
end for
```

where l is a list of all surviving decompositions for the subject, q is the goodness of fit between two decompositions, n is the number of decompositions in the landscape and m is the number of subjects in the group.

The second pass recursively finds the best matching pairs of modular decompositions, removes all other possibilities for those subjects and creates a typical decomposition for the combined subjects for which everything is compared to in future comparisons.

References

- 1. Rubinov M, Sporns O (2011) Weight-conserving characterization of complex functional brain networks. NeuroImage In Press, Corrected Proof: –.
- Watts DJ, Strogatz SH (1998) Collective dynamics of /'small-world/' networks. Nature 393: 440–442.
- 3. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198701–
- Freeman LC (1978) Centrality in social networks conceptual clarification. Social Networks 1: 215– 239.
- Humphries MD, Gurney K (2008) Network 'small-world-ness': a quantitative method for determining canonical network equivalence. PLoS ONE 3: e0002051–e0002051.