Supporting Information

Nicholas Leioatts, Tod D. Romo, and Alan Grossfield*

Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA

E-mail: alan_grossfield@urmc.rochester.edu

^{*}To whom correspondence should be addressed

In this supplementary document the covariance overlaps, z-scores and spring parameters obtained in our study are reported. We also outline the spring function naming convention in detail. The following is a complete list of spring functions presented in this study. The functional forms replace $k(R_{ij}^{\circ})$ in Eq. (1), restated here for convenience:

$$U_{ij} = k(R_{ij}^{\circ}) \left(|R_{ij}| - |R_{ij}^{\circ}| \right)^2$$
(S1)

The Heaviside step function is defined by:

$$k(R_{ij}^{\circ}) = \begin{cases} 1 & : R_{ij}^{\circ} < R_c \\ 0 & : R_{ij}^{\circ} \ge R_c \end{cases}$$
(S2)

In figures referring to an "exponential" spring function the following form is used:

$$k(R_{ij}^{\circ}) = \exp(-aR_{ij}^{\circ}) \tag{S3}$$

The spring can also vary with a power function:

$$k(R_{ij}^{\circ}) = (R_{ij}^{\circ})^{-a} \tag{S4}$$

The functional form developed by Hinsen et al.²⁴ and referred to as HCA in our text takes the following form:

$$k(R_{ij}^{\circ}) = \begin{cases} a(R_{ij}^{\circ}) + b & : R_{ij}^{\circ} < R_c \\ c(R_{ij}^{\circ})^{-d} & : R_{ij}^{\circ} \ge R_c \end{cases}$$
(S5)

The following functional forms rely on chemical information, connecting bonded residues (those neighboring in sequence) and non-bonded residues (all other beads in the system) with separate spring types. In the following functions we label springs with the bonded term followed by the non-bonded term, separated by a colon. A constant stiffness, k_1 , for bonded terms and an

exponentially decaying stiffness for non-bonded terms would be labelled - Constant:Exponential. That function takes the following form:

$$k(R_{ij}^{\circ}) = \begin{cases} k_1 & : \text{Bonded} \\ c \times \exp(-dR_{ij}^{\circ}) & : \text{Non-bonded} \end{cases}$$
(S6)

In addition a power function could be used instead of the exponential function. The following form would be labelled Constant:Power:

$$k(R_{ij}^{\circ}) = \begin{cases} k_1 & : \text{Bonded} \\ \\ c(R_{ij}^{\circ})^{-d} & : \text{Non-bonded} \end{cases}$$
(S7)

The following functional forms rely on chemical information, connecting bonded residues (those neighboring in sequence), angle residues (second-nearest neighboring in sequence) and non-bonded terms (all others) with three separate spring types. The nomenclature used for these functions is the bonded term, followed by the angle term, followed by the non-bonded term, all separated by colons. The function below is labelled Constant:Constant:Exponential when reported in figures and tables:

$$k(R_{ij}^{\circ}) = \begin{cases} k_1 & : \text{Bonds} \\ k_2 & : \text{Angles} \\ c \times \exp(-dR_{ij}^{\circ}) & : \text{Non-bonded} \end{cases}$$
(S8)

Similarly, the function Constant: Power takes the form:

$$k(R_{ij}^{\circ}) = \begin{cases} k_1 & : \text{Bonds} \\ k_2 & : \text{Angles} \\ c(R_{ij}^{\circ})^{-d} & : \text{Non-bonded} \end{cases}$$
(S9)

Opsin Simulation Details

The opsin data has not been published elsewhere. The starting structure used coordinates obtained from an x-ray crystallographic structure (PDB ID: 3CAP).¹ All waters and fatty acids were removed. Opsin was then embedded in a membrane made of 123 1-stearoy1-2-docosahexaenoy1phosphatidylethanolamine (SDPE) molecules. The system was hydrated with 8,200 water molecules. We added 15 Na⁺ and 19 Cl⁻ atoms to neutralize the system and obtain an \approx 100 mM sodium chloride concentration.

This simulation was performed in NAMD 2.8² using the NP γ T ensemble, where γ is a 30 dyn/cm surface tension applied laterally to the bilayer. The CHARRM22 forcefield^{3,4} was used for the protein and the CHARMM36 forcefield⁵ was used for lipids.

The resulting system was then simulated for 472 ns on the University of Rochester's Blue Gene/P using a 2 fs timestep with the RATTLE applied to constrain hydrogen containing bonds to their equilibrium length.⁶ The temperature was held at 310K using Langevin dynamics. Electrostatic interactions were computed using the Particle Mesh Ewald method^{7–9} with a 75x75x96 grid. Van der Waals interactions were smoothly truncated by force switching from 9 to 10 Å.

Supplementary Tables

Resolution	Connectivity	Spring Function	Z-score	Overlap
one-bead/	Distance	Heaviside	96.26	0.459
two-residues		Exponential	94.81	0.481
		Power	87.33	0.477
		НСА	89.31	0.477
	Bonds: Constant:Exponential		95.80	0.481
	Non-bonded	Constant:Power	84.49	0.46
	Bonds:Angles:	Constant:Constant:Exponential	95.83	0.481
	Non-bonded	Constant:Constant:Power	84.39	0.464
one-bead/	Distance	Heaviside	238.50	0.503
residue		Exponential	205.82	0.545
		Power	206.05	0.552
		НСА	205.32	0.552
	Bonds:	Constant:Exponential	204.24	0.545
	Non-bonded	Constant:Power	206.95	0.552
	Bonds:Angles:	Constant:Constant:Exponential	199.57	0.548
	Non-bonded	Constant:Constant:Power	206.38	0.524
two-beads/	Distance	Heaviside	145.27	0.251
residue		Exponential	179.17	0.275
		Power	183.75	0.275
		HCA	321.85	0.350
	Bonds:	Constant:Exponential	181.92	0.276
Non-bonded C		Constant:Power	188.95	0.275
	Bonds:Angles:	Constant:Constant:Exponential	216.98	0.273
	Non-bonded	Constant:Constant:Power	225.66	0.269

Table S1: β_2 AR covariance overlaps and Z-scores (n = 10,000) after individual parametrization.

Resolution	Connectivity	Spring Function	Z-score	Overlap
one-bead/	Distance	Heaviside	73.46	0.381
two-residues		Exponential	77.30	0.406
		Power	70.60	0.412
		HCA	71.72	0.414
	Bonds:	Constant:Exponential	72.79	0.409
	Non-bonded	Constant:Power	69.59	0.400
	Bonds:Angles:	Constant:Constant:Exponential	75.11	0.409
	Non-bonded	Constant:Constant:Power	69.85	0.400
one-bead/	Distance	Heaviside	192.94	0.414
residue		Exponential	168.60	0.457
		Power	165.15	0.467
		HCA	163.83	0.468
	Bonds:	Constant:Exponential	158.02	0.457
	Non-bonded	Constant:Power	162.12	0.465
	Bonds:Angles:	Constant:Constant:Exponential	157.27	0.459
	Non-bonded	Constant:Constant:Power	158.53	0.445
two-beads/	Distance	Heaviside	345.15	0.367
residue		Exponential	319.74	0.394
		Power	312.13	0.394
		НСА	315.39	0.394
	Bonds:	Constant:Exponential	312.12	0.394
Non-bondedConstant:PowerBonds:Angles:Constant:Constant:Exponentia		Constant:Power	307.45	0.393
		338.12	0.383	
	Non-bonded	Constant:Constant:Power	320.09	0.385

Table S2: rhodopsin covariance overlaps and Z-scores (n = 10,000) after individual parametrization.

Resolution	Connectivity	Spring Function	Z-score	Overlap
one-bead/	Distance	Heaviside	87.69	0.414
two-residues		Exponential	91.71	0.449
		Power	83.47	0.450
		HCA	89.31	0.436
	Bonds:	Constant:Exponential	88.61	0.451
	Non-bonded	Constant:Power	81.97	0.438
	Bonds:Angles:	Constant:Constant:Exponential	84.17	0.442
	Non-bonded	Constant:Constant:Power	82.23	0.438
one-bead/	Distance	Heaviside	194.58	0.407
residue		Exponential	182.01	0.472
		Power	168.17	0.490
		НСА	169.95	0.490
	Bonds:	Constant:Exponential	182.91	0.472
	Non-bonded	Constant:Power	167.41	0.490
	Bonds:Angles:	Constant:Constant:Exponential	175.79	0.480
	Non-bonded	Constant:Constant:Power	172.43	0.469
two-beads/	Distance	Heaviside	355.10	0.377
residue		Exponential	327.10	0.408
		Power	325.17	0.416
		НСА	319.13	0.417
	Bonds:	Constant:Exponential	327.95	0.414
	Non-bonded	Constant:Power	326.84	0.416
	Bonds:Angles:	Constant:Constant:Exponential	375.64	0.415
	Non-bonded	Constant:Constant:Power	351.09	0.423

Table S3: CB2 covariance overlaps and Z-scores (n = 10,000) after individual parametrization.

Table S4: Optimized spring parameters after fitting to all three trajectories simultaneously. All distance-based parameters are in angstroms and all other quantities are unitless.

Resolution	Connectivity	Spring Function	Parameters
one-bead/	Distance	Heaviside	13.93
two-residues		Exponential	-0.60
		Power	-6.54
		HCA (R_c , a, b, c, d)	3.68,
			1944.5, 2675.36,
			5.84296e+06, 6.60
	Bonds:	Constant:Exponential	11.77 : -5.15
	Non-bonded	Constant:Power	1.60 : -6.59
	Bonds:Angles:	Constant:Constant:Exponential	106.7 : 59.7 : -0.52
	Non-bonded	Constant:Constant:Power	30.84 : 8.68 : -6.48
one-bead/	Distance	Heaviside	8.64
residue		Exponential	-1.06
		Power	-8.48
		HCA (\mathbf{R}_c , a, b, c, d)	2.91,
			2089, 3076,
			4.173e+06, 8.60
	Bonds:	Constant:Exponential	9.77:-1.06
	Non-bonded	Constant:Power	2.72:-8.56
	Bonds:Angles:	Constant:Constant:Exponential	9.41 : 0.053 : -0.87
	Non-bonded	Constant:Constant:Power	15.99 : 2.83 : -7.93
two-beads/	Distance	Heaviside	8.63
residue		Exponential	-1.32
		Power	-9.01
		HCA (\mathbf{R}_c , a, b, c, d)	8.63,
			3154.45, -1313.51,
			5.87623e+06, 5.38
	Bonds:	Constant:Exponential	0.30 : -1.19
	Non-bonded	Constant:Power	8.52 : -8.84
	Bonds:Angles:	Constant:Constant:Exponential	0.51 : 30.79 : -0.76
	Non-bonded	Constant:Constant:Power	5.927e-04 : 4.47e-04 : -6.43

References

- Park, J. H.; Scheerer, P.; Hofmann, K. P.; Choe, H.-W.; Ernst, O. P. *Nature* 2008, 454, 183–187.
- Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781–802.
- Brooks, B.; Bruccoleri, R.; Olafson, B.; States, D.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187–217.
- MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack Jr., R.; Evanseck, J.; Field, M.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.; Prodhom, B.; Reiher, W., III; Roux, B.; Schlenkrich, M.; Smith, J.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586–3616.
- Klauda, J. B.; Venable, R. M.; Freites, J. A.; O'Connor, J. W.; Tobias, D. J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A. D.; Pastor, R. W. J. Phys. Chem. B 2010, 114, 7830–7843.
- 6. Andersen, H. C. J. Comput. Chem. 1983, 52, 24-34.
- 7. Deserno, M.; Holm, C. J. Chem. Phys. 1998, 109, 7678.
- 8. Deserno, M.; Holm, C. J. Chem. Phys. 1998, 109, 7694.
- Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J Chem. Phys. 1995, 103, 8577–8593.