Supplemental Data

Supplemental Table S1 Primers used for preparation of stable transformation vectors and VIGS constructs

Primer name	Primer sequence (5'-3')	Construct	
pRESC5-C4-1	ATGGGTAATAACTGTTTTTCCAGC	pRESC5-NaCDPK4	
pRESC5-C4-2	TTGATGTTGGCTTCTGTGGTTATC		
pRESC5-C5-1	GTTAGTGGTTCAAATAGCAATACCCC	pRESC5-NaCDPK5	
pRESC5-C5-2	CCACAAGGAATAACCCCTCCAC		
CDPK4-190-VIGS-1	GTCAGGATCCATGGGTAATAACTGTTTTC	pTV-NaCDPK4	
CDPK4-190-VIGS-2	GTCAAAGCTTTTCTGTGGTTATCTTTAACT		
CDPK5-190-VIGS-1	GTCAGGATCCATGGGCAGCTGTTTTCTAG	pTV-NaCDPK5	
CDPK5-190-VIGS-2	GTCAAAGCTTGGCTGTTTTTGTATTAATAT		
CDPK4/5-VIGS-1	GCGGCGGTCGACCAACCTAGGAGTTCTCAG C	pTV-NaCDPK4/5	
CDPK4/5-VIGS-1	GCGGCGGGATCCACATTCTCGTGACCAGC		
CDPK4-Prom-1	CGATGAATTCGAAATTATGCACATTTTTAGTA ATA	pCAM-NaCDPK4Pro:GUS	
CDPK4-Prom-2	AGTCAGATCTACCATATTTAGGATATGAATAT AAAACC		
CDPK5-Prom-1	CGATGGATCCTTGTGCTTTCGCGTTGC		
CDPK5-Prom-2	CTAGCCATGGATTGGTGAAAATGATGAAAAA GTG	pcam-nacdPK5Pro:GUS	

Supplemental Table S2 Sequences of primers used for quantitative real-time PCR (SYBR Green analysis)

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')
NaActin2	GGTCGTACCACCGGTATTGTG	GTCAAGACGGAGAATGGCATG
NaCDPK1	CCGTGCAGCCGATACAAAC	TTTCCCAAGTGTATATTGCTTCCTAA
NaCDPK2	GCAATGTGGCGAACTCGG	CTGCTGTTTCACCTCTGGCAC
NaCDPK4	CGTTGCCACCACAAGTCTAA	TACATCCTCAACTGCAATCGTAG
NaCDPK5	GGGTATACATATGTTGCTACAGAT	ACCACATTCTCGTGACCAGC
NaGLA1	AGTAGCAGATGATGTTAGTACATGTA	ACATGTGAATATGCCCATGGCATACT
NaLOX3	GGCAGTGAAATTCAAAGTAAGAGC	CCCAAAATTTGAATCCACAACA
NaAOS	GACGGCAAGAGTTTTCCCAC	TAACCGCCGGTGAGTTCAGT
NaAOC	AACTACCTAACCCTCTCATTTCTCA	AAGCGAAGATAGGCAGGGC
NaOPR3	AATGGAGTTGGAGTTTGTTT	AGGTGGTTGAAGCAGTCGTT
NaACX1	GAATGTCTGTTGCTTGTGCTCA	TACCGCAAAGCACCTCCAG

Supplemental Table S3 Accession numbers or locus numbers of genes whose deduced protein sequences were used for phylogenetic analysis

Gene	Accession No.	Gene	Accession No.	Gene	Accession No.
AtCPK1	At5g04870	AtCPK18	At4g36070	NtCDPK1	AF072908
AtCPK2	At3g10660	AtCPK19	At1g61950	NtCDPK2	AJ344154
AtCPK3	At4g23650	AtCPK20	At2g38910	NtCDPK3	AJ344155
AtCPK4	At4g09570	AtCPK21	At4g04720	NtCDPK4	AF435451
AtCPK5	At4g35310	AtCPK22	At4g04710	NtCDPK5	AY971376
AtCPK6	At2g17290	AtCPK23	At4g04740	NtCDPK9	HQ141792
AtCPK7	At5g12480	AtCPK24	At2g31500	NtCDPK11	HQ158609
AtCPK8	At5g19450	AtCPK25	At2g35890	NtCDPK12	GQ337420
AtCPK9	At3g20410	AtCPK26	At4g38230	NpCDPK17	AJ699161
AtCPK10	At1g18890	AtCPK27	At4g04700	MtCDPK1	AY821654
AtCPK11	At3g20410	AtCPK28	At5g66210	StCDPK1	AF363784
AtCPK12	At5g23580	AtCPK29	At1g76040	StCPK4	AB279737
AtCPK13	At3g51850	AtCPK30	At1g74740	StCPK5	AB279738
AtCPK14	At2g41860	AtCPK31	At4g04695		
AtCPK15	At4g21940	AtCPK32	At3g57530		
AtCPK16	At2g17890	AtCPK33	At1g50700		
AtCPK17	At5g12180	AtCPK34	At5g19360		

Note: the first two letter of each gene indicate the species origins of these genes. At: *Arabidopsis thaliana*; Nt: *Nicotiana tabacum*; Np: *Nicotiana plumbaginifolia*; St: *Solanum tuberosum*; Mt: *Medicago truncatula*.

Supplemental Figures

⊢ 0.02

Supplemental Figure S1. Phylogenetic analysis of CDPKs.

Protein sequences of CDPKs from different plants were aligned using the Clustal W algorithm, and an unrooted Neighbor-Joining tree and bootstrap values were constructed using MEGA 4 software. The first two letters of protein names indicate species origins (At: *Arabidopsis thaliana*, Nt: *Nicotiana tabacum*; Np: *Nicotiana plumbaginifolia*; St: *Solanum tuberosum*; Mt: *Medicago truncatula*). Roman numbers indicate the subgroups of CDPKs according to Cheng et al., Plant Physiology, 2002, **129**, 469-485. NaCDPK4 and NaCDPK5 are highlighted in an orange background and CDPKs that cluster with Arabidopsis subgroup IV of CDPKs are indicated with a blue box.

A

NaCDPK4	MGNNCFSSSKVSGSNSNTPSTTTT <mark>TTTVNVRRNTANPPS</mark> TSTITSTKQEGSHCNKQKVKD
NaCDPK5	MG-SCFSSSKVSGSNSNTPSTTTTNVNVHHNR-PSTTTTTTTVTSRKQEGSNYNREKGNI
NaCDPK4	N <mark>HRSQ</mark> HQKQQPR <mark>N</mark> SQQNV <mark>KKHKNG</mark> RRQ <mark>KS</mark> GVI PCGKRTDFGYDKDFDKR <mark>F</mark> TI GKLLGHGQ
NaCDPK5	N <mark>TKNS</mark> HQKQQPR <mark>S</mark> SQQNV <mark>VVKP</mark> NSRRQ <mark>SG</mark> GVI PCGKRTDFGYDKDFDKR <mark>Y</mark> TI GKLLGHGQ
NaCDPK4	FGYTYVATHKSNGDRVAVKRI EKNKMVPTI AVEDVKREVKI LKALSGHENVVQFNNAFED
NaCDPK5	FGYTYVATDKSSGDRVAVK <mark>K</mark> I EKNKMVLPI AVEDVKREVKI LKALAGHENVVQFYNSFED
NaCDPK4	DNYVYIVMEL CEGGELL DRIL AKKDSRY <mark>A</mark> EKDAAIVVRQML KVAAQCHL HGL VHRDMKPE
NaCDPK5	DNYVYIVMEL CEGGELL DRIL <mark>S</mark> KKDSRY <mark>T</mark> EKDAAIVVRQML KVAA <mark>E</mark> CHL HGL VHRDMKPE
NaCDPK4	NFLFKS <mark>PKE</mark> DSPLKATDFGLSDFI RPGKKFQDI VGSAYYVAPEVLKRRSGPESDVWSI GV
NaCDPK5	NFLFKS <mark>SKM</mark> DSPLKATDFGLSDFI RPGKKFQDI VGSAYYVAPEVLKRRSGPESDVWSI GV
NaCDPK4	I TYI LLCGRRPFWDKTEDGI FKEVLRNKPDF <mark>C</mark> RKPWPTI SNSAKDFVKKLLVKDPRARLT
NaCDPK5	I TYI LLCGRRPFWDKTEDGI FKEVLRNKPDF <mark>R</mark> RKPWP <mark>N</mark> I SNSAKDFVKKLLVKDPRARLT
NaCDPK4	AAQALSHPW/REGGDASEI PLDI SVLSNMRQFVKYSRLKQFALRALASTVDEEELAGVRD
NaCDPK5	AAQALSHPW/REGGDASEI PLDI SVLSNMRQFVRYSRLKQFALRALASTLDEEELSDLKD
NaCDPK4	QFSAI DVDKNGVI SLEEMRQALAKDLPWKMKESRVLEI LQAI D <mark>G</mark> NTDGLVDFPEFVAATL
NaCDPK5	QFSAI DVDKNGVI SLEEMRQALAKDLPWKMKESRVLEI LQAI D <mark>S</mark> NTDGLVDFPEFVAATL
NaCDPK4	HVHQLEEHNSTKWQ <mark>E</mark> RSQAAFEKFDVDRDGFITPEELRMHTGLKGSIDPLLEEADIDKDG
NaCDPK5	HVHQLEEHNSTKWQQRSQAAFEKFDVDRDGFITPEELKMHTGLKGSIDPLLEEADIDKDG
NaCDPK4 NaCDPK5	KI SLSEFRRLLRTASMSSRMVTSPTVRGSRKS.

В	
NaCDPK4	ATGGGTAATAACTGTTTTTCCAGCTCAAAAGTTAGTGGTTCTAACAGCAACACCCCCCTCC
NaCDPK5	ATGGG <mark>C</mark> AGCTGTTTTTCTAGCTCTAAAGTTAGTGGCTCAAATAGCAATACCCCTTCT
NaCDPK4	ACCACCACCACCACCACCGTGAATGTCCGGAGGAACACAGCCAATCCACCTTCTACA
NaCDPK5	ACAACTACTACAAATGTAAATGTTCATCACCAACCGTCCTTCAACAACAACAA-CAACA
NaCDPK4	TCCACAATTACATCAACAAAACAAGAAGGGTC <mark>TC</mark> ATT <mark>GC</mark> AATAAACAGAAAGTTAAAGAT
NaCDPK5	ACAACTGTTACATCAAGAAAAACAAGAGGGGTC <mark>AA</mark> ATT <mark>AT</mark> AATAGAGAAAAAGGTAATAT
NaCDPK4	AA <mark>CCAC</mark> AG <mark>AAG</mark> CCAACATCAAAAAACAACCAACCTAGGAATTCTCAGCAAAATGTT <mark>AAGAAG</mark>
NaCDPK5	AATACAAAAAACAGCCACCAAAAACAACAACCTAGGAGTTCTCAGCAAAATGTT <mark>GTTGTT</mark>
NaCDPK4	CACAAGAAT <mark>GGG</mark> AG <mark>G</mark> AGACA <mark>GAAGA</mark> GTGGGGTTATTCCTTGTGGGAA <mark>G</mark> AGAACAGATTTT
NaCDPK5	AAGCCAAATTCAAGAAGACAAA <mark>GTG</mark> GAGGGGTTATTCCTTGTGGGAAAAGAACAGATTTT
NaCDPK4	GGGTATGATAAAGATTTTGATAAGAGGTTTACCATTGGCAAGTTGTTGGGTCATGGCCAA
NaCDPK5	GGGTATGATAAAGATTTTGATAAGAGGTATACTATTGGTAAAATTGTTGGGTCATGGCCAA
NaCDPK4	ŦŦŦĠĠŦŦĂĊĂĊĊŦĂĊĠŦŦĠĊĊĂĊĊĂĊĂĂĞŦĊŦĂĂŦĠĠĂĠĂŦĊĠĊĠĊĊĠĊŢĊĊŎŔŎġŎĠ
NaCDPK5	ŦŦŦġġĠŦĂŦĂĊĂŦĂŦĠŦŦġĊŦĂĊ <mark>ĂĠ</mark> ĂŦĂĂĂŦĊŦŦĊŦġġaġaŦĊġŦġĊŦġŦŦĂĂġĂĂĂ
NaCDPK4	ATTGAGAA <mark>G</mark> AACAAGATGGTTC <mark>CTA</mark> CGATTGCAGTTGAGGATGTAAAACGAGAAGTCAAG
NaCDPK5	ATTGAGAAAAAAAAGATGGTTCTTCCAATTGCGGTTGAGGATGTGAAACGAGAAGTCAAG
NaCDPK4	ATATTGAAGGCCTTATC <mark>C</mark> GGTCATGAGAATGTGGTTCAATTC <mark>A</mark> ATAAT <mark>C</mark> CATTTGAGGAT
NaCDPK5	ATATTGAAGGCCTTA <mark>G</mark> CTGGTCA <mark>C</mark> GAGAATGTGGTTCAATTCTATAATTCATTTGAGGAT
NaCDPK4	GATAACTATGTCTACAT <mark>A</mark> GTAATGGAGTTATGTGAGGGTGGAGAACTCTTGGACCGTATT
NaCDPK5	GATAATTATGTCTACATCGTAATGGAGTTATGTGAGGGTGGAGAACTATTGGACCGAATC
NaCDPK4	TTG <mark>G</mark> CCAAAAAGGACAGCCGTTAT <mark>G</mark> CCGAGAAAGATGCAGCAATAGTTGTACGCCAGATG
NaCDPK5	TTGTCCAAAAAAGATAGTCGATATACTGAGAAAGATGC <mark>G</mark> GC <mark>A</mark> TAGTTGTACGCCAGATG
NaCDPK4	CTAAAAGTTGCCGCTCAATGTCATTTACATGGTTTGGTGCATCGTGATATGAAACCTGAG
NaCDPK5	TTAAAAGTCGCTGCTCAGTGTCATTTACATGGTCTGGTGCATCGAGATATGAAACCTGAG
NaCDPK4	AATTTTCTCTTTAAATC <mark>TC</mark> CAAAG <mark>GA</mark> GGATTCACCATTGAAGGCCACAGATTTTGGTCTT
NaCDPK5	AATTTTCTCTTTAAATC <mark>CT</mark> CAAAG <mark>AT</mark> GGATTC <mark>G</mark> CCATTAAAAGCCACAGATTTTGGTCTT
NaCDPK4	TCAGACTTCATAAGACCAGGGAA <mark>G</mark> AA <mark>G</mark> TTCCAAGATATTGTTGGCAGTGCATATTACGTA
NaCDPK5	TCAGACTTCATAAGACCAGGGAAAAAATTCCAAGACATTGTTGGCAGTGCATATTATGTA
NaCDPK4	GC <mark>G</mark> CCAGAGGTATTAAAGCGTAGATCAGGACCTGAATCAGATGT <mark>G</mark> TGGAG <mark>C</mark> ATTGGTGTT
NaCDPK5	GCCCCGGAGGTGTTAAAGCGTAGATCAGGACCTGAATCAGATGTATGGAGTATAGGTGTA
NaCDPK4	ATTACATACATTTTGCTCTGTGGCCGTCGGCCCTTCTGGGATAAAACAGAGGATGGCATA
NaCDPK5	ATTACATACATTTTGCTATGTGGTCGTCGGCCTTTCTGGGACAAAACTGAGGATGGTATA
NaCDPK4	TTCAAGGAGGT <mark>AC</mark> TA <mark>A</mark> GAAACAAGCCTGATTTTTGTCGCAAGCC <mark>G</mark> TGGCCAA <mark>CT</mark> ATAAGC
NaCDPK5	TTCAAGGAGGT <mark>CT</mark> TA <mark>C</mark> GAAACAAGCCTGATTTT <mark>C</mark> GTCGCAAGCC <mark>A</mark> TGGCCAA <mark>AC</mark> ATAAGC
NaCDPK4	AACAGTGCTAAAGATTTTGT <mark>T</mark> AAGAAATTACTGGTGAAGGATCCTCGCGCTAGACTTACT
NaCDPK5	AACAGTGCTAAAGATTTTGT <mark>A</mark> AAGAAATTACTGGTGAAGGATCC <mark>G</mark> CGCGCTAGACTTACT
NaCDPK4	GCT GC <mark>C</mark> CAGGCC <mark>C</mark> T AT CGCAT CCAT GGGT CCG <mark>C</mark> GAA GGAGGT GAT GCAT CT GAGAT T CCA
NaCDPK5	GCT GCTCAGGCCTT AT CGCAT CCAT GGGT CCG <mark>A</mark> GAAGGAGGT GAT GCAT CT GAGAT T CCA
NaCDPK4	CT <mark>G</mark> GACATTTC <mark>C</mark> GTCTTATCAAACATGCG <mark>A</mark> CAATTTGTCA <mark>AG</mark> TATAGTCG <mark>AT</mark> TAAAACAG
NaCDPK5	CTCGACATTTCTGTTTTATCCAACATGCG <mark>C</mark> CAATTTGTCA <mark>GA</mark> TATAGTCG <mark>CC</mark> TAAAACAG
NaCDPK4	ŦŦŦĠĊŦŦŦĂĊĠĠĠĊ <mark>Ă</mark> ŦŦ Ġ ĠĊŦĂĠ <mark>Ŧ</mark> ĂĊĂ <mark>Ġ</mark> ŦŦĠĂŦĠĂĠĠĠĂĠĠĊŔ <mark>ĊĠĊĂ</mark> Ġ <mark>ĠŦĠ</mark> ŦĊĊĠĠĠĂŦ
NaCDPK5	ŦŦŦĠĊŦŦŦĂĊĠĠĠĊ <mark>Ġ</mark> ŦŦ <mark>Ă</mark> ĠĊŦĂĠ <mark>Ċ</mark> ĂĊĂĊĂĊŦŢĠĂŦĠĂĠĠĠĂĠĠĊĊĊĊĊŎŎŎŎŎŎ

NaCDPK4	CA <mark>G</mark> TTTTCTGCAATTGACGTGGATAAAAATGGTGTCATTAGCCTTGAAGAAATGAGACAG
NaCDPK5	CAATTTTCTGCAATTGATGTGGATAA <mark>G</mark> AATGGTGTCATCAGTCTTGAAGAAATGAGACAG
NaCDPK4	GCCCTTGCTAAGGATCTTCCCTGGAAGATGAAAGAGTCACGCGTTCTTGAGATTCTTCAA
NaCDPK5	GCCCTTGCCAAGGATCTCCCCATGGAAAAATGAAAGAGTCACGAGTTCTTGAGATTCTTCAA
NaCDPK4	GCGATTGATGGCAACACAGATGGGCTAGTTGATTTCCCAGAGTTTGTCGCAGCCACTCTA
NaCDPK5	GCGATTGATAGTAACACTGATGGGCTTGTTGATTTCCCCGGAGTTTGTCGCCGCCACTCTA
NaCDPK4	CATGTCCATCAGTTGGAGGAGCATAATTCTACAAAATGGCAG <mark>G</mark> AAAGATC <mark>G</mark> CAAGCTGCT
NaCDPK5	CATGTCCATCAGTTGGAGGAGCATAATTCTACAAAATGGCAG <mark>C</mark> AAAGATC <mark>A</mark> CA <mark>G</mark> GCTGCT
NaCDPK4	TTTGAGAAATTTGATGTTGATAGAGATGGATTCATAACTCCTGAAGAACTTA <mark>G</mark> AATGCAT
NaCDPK5	TTTGAGAAATTTGATGTTGATAGAGATGGATTCATAACTCCTGAAGAACTTA <mark>A</mark> AATGCAC
NaCDPK4	ACCGGCCTAAACGGCTCCATAGACCCACTTCTAGAAGAAGCAGATATCGACAAAGATGGG
NaCDPK5	ACCGGTTTTCAAAGGCTCCATAGATCCACTTTTAGACGAAGCCGACATTGACAAAGACGGG
NaCDPK4	AAGATAAGCTTGTCAGAATTTCGTAGGCTTCTAAGAACTGCAAGTATGAGTTCA <mark>AGG</mark> ATG
NaCDPK5	AAGATAAGCCTGTCAGAATTCCGTAGGCTTTTAAGAACTGCTAGTATGAGTTCA <mark>CCA</mark> ACT
NaCDPK4	GTGA <mark>CTAGTCCAACTGTTAGA</mark> GGCTCT <mark>CGGA</mark> AA <mark>AGTTAG</mark>
NaCDPK5	GTGA <mark>GAGATTCACGGAGAAATGTAG</mark> CTTTGTAA

Supplemental Figure S2. Alignment of NaCDPK4 and NaCDPK5 amino acid and nucleotide sequences and regions used for RNAi constructs.

(A) Amino acid sequence alignment of NaCDPK4 and NaCDPK5. Regions used for constructing pRESC5-CDPK4 and pRESC5-CDPK5 are indicated with the red and blue bar, respectively. The sequences under the brown, green, and purple bars represent the kinase domain, autoinhibitory domain, and EF hands, respectively. (B) Nucleotide sequence alignment of *NaCDPK4* and *NaCDPK5*. Regions used for constructing pRESC5-CDPK4 and pRESC5-CDPK5 are below the red and blue bar, respectively.

Supplemental Figure S3. *NaCDPK4* but not *NaCDPK5* is expressed in trichomes of *N. attenuata*.

Histochemical GUS assays were done for the leaves of *NaCDPK4Pro:GUS* and *NaCDPK5Pro:GUS* plants. Photographs were taken under a stereo microscope. Bar = 200 μ m.

Supplemental Figure S4. Transcript levels of other CDPKs in IRcdpk4/5 plants.

Wild-type (WT) and IRcdpk4/5 (line IRcdpk4/5-1) plants were wounded with a pattern wheel and 20 μ L of *M. sexta* OS were applied to wounds. Transcript levels (mean ± SE) of (**A**) *NaCDPK1*, (**B**) *NaCDPK2*, and (**C**) *NaCDPK8* were determined using qRT-PCR in samples collected at indicated times (N = 5).

Supplemental Figure S5. Morphology of IRcdpk4 plants at early flowering stage.

Wild-type (WT) and IRcdpk4 (lines IRcdpk4-6 and IRcdpk4-8) plants were photographed 43 days after germination.

Supplemental Figure S6. JA and JA-Ile contents in IRcdpk4 plants.

Wild-type (WT) and IRcdpk4 (lines IRcdpk4-6 and IRcdpk4-8) were wounded with a pattern wheel and 20 μ L of water or *M. sexta* OS were applied to wounds (W+W and W+OS, respectively). Contents (mean ± SE) of (**A**) JA and (**B**) JA-IIe were analyzed in samples collected after indicated times. Asterisks indicate significant differences between WT and IRcdpk4 plants (Student's *t*-test; *, P < 0.05; **, P < 0.01; ***, P < 0.001).

Supplemental Figure S7. SA contents in wild-type and IRcdpk4/5 plants.

Wild-type (WT) and IRcdpk4/5 (lines IRcdpk4/5-1 and IRcdpk4/5-2) were wounded with a pattern wheel and 20 μ L of water or *M. sexta* OS were applied to wounds (W+W and W+OS, respectively). Contents (mean ± SE) of SA were analyzed in samples collected after indicated times. No significant differences between WT and IRcdpk4 plants (Student's *t*-test).

NaCDPK4	ATGGG <mark>TAATAA</mark> CTGTTTTTC <mark>C</mark> AGCTCAAAAGTTAGTGGTTCTAACAGCAACACCCCCCTCC
NaCDPK5	ATGGG <mark>C</mark> AGCTGTTTTTCTAGCTCTAAAGTTAGTGGCTCAAATAGCAATACCCCTTCT
NaCDPK4	ACCACCACCACCACCACCACCGTGAATGTCCGGAGGAACACAGCCAATCCACCTTCTACA
NaCDPK5	ACAACTACTACAAATGTAAATGTTCATCACCAACCGTCCTTCAACAACAACAA-CAACAA-
NaCDPK4	TCCACAATTACATCAACAAAAACAAGAAGGGTCTCATTGCAATAAACAGAAAGTTAAAGAT
NaCDPK5	ACAACTGTTACATCAAGAAAACAAGAGGGGGTC <mark>AA</mark> ATT <mark>AT</mark> AATAGAGAAAAAGGTAATATT
NaCDPK4	AA <mark>CCAC</mark> AGAAGCCAACATCAAAAAACAACAACCAGGAATTTCTCAGCAAAATGTT <mark>AAGAAG</mark>
NaCDPK5	AA <mark>TACA</mark> AAAAACAGCCACCAAAAAACAACAACCTAGGAGTTCTCAGCAAAATGTT <mark>GTTGTT</mark>
NaCDPK4	CACAAGAAT <mark>GGG</mark> AGGAGACA <mark>G</mark> AAGAGTGGGGTTATTCCTTGTGGGAAGAGAACAGATTTT
NaCDPK5	AA <mark>GCCA</mark> AAT <mark>TCA</mark> AG <mark>A</mark> AGACAAA <mark>GTG</mark> GAGGGTTATTCCTTGTGGGAA <mark>A</mark> AGAACAGATTTT
NaCDPK4	GGGTATGATAAAGATTTTGATAAGAGGTTTACCATTGGCAAGTTGTTGGGTCATGGCCAA
NaCDPK5	GGGTATGATAAAGATTTTGATAAGAGGT <mark>A</mark> TAC <mark>T</mark> ATTGG <mark>T</mark> AAATTGTTGGGTCATGGCCAA
NaCDPK4	TTTGGTTACACCTACGTTGCCACCACAAGTCTAATGGAGATCGCGTCGCTGTCAAGAGA
NaCDPK5	TTTGGGTATACATATGTTGCTACAGATAAATCTTCTGGAGATCGTGTTGCTGTTAAGAAA
NaCDPK4	ATTGAGAA <mark>G</mark> AACAAGATGGTTCCTACCATTGCAGTTGAGGATGTAAAACGAGAAGTCAAG
NaCDPK5	ATTGAGAAAAAAAAGATGGTTCTTCCAATTGC <mark>G</mark> GTTGAGGATGTCAAACGAGAAGTCAAG
NaCDPK4	ATATTGAAGGCCTTATCCGGTCATGAGAATGTGGTTCAATTCAATAATGCATTTGAGGAT
NaCDPK5	ATATTGAAGGCCTTACCTGGTCACGAGAATGTGGTTCAATTCTATAATTCATTTGAGGAT
NaCDPK4	GATAA <mark>C</mark> TATGTCTACAT <mark>A</mark> GTAATGGAGTTATGTGAGGGTGGAGAACTCTTGGACCGTATT
NaCDPK5	GATAATTATGTCTACAT <mark>C</mark> GTAATGGAGTTATGTGAGGGTGGAGAACT <mark>A</mark> TTGGACCG <mark>A</mark> ATC
NaCDPK4	TTG <mark>G</mark> CCAAAAAGGACAGCCGTTATGCCGAGAAAGATGCAGCAATAGTTGTACGCCAGATG
NaCDPK5	TTGTCCAAAAAAGATAGTCGATATACTGAGAAAGATGCGGCGATAGTTGTACGCCAGATG
NaCDPK4	CTAAAAGTTGCCGCTCAATGTCATTTACATGGTTTGGTGCATCGTGATATGAAACCTGAG
NaCDPK5	TTAAAAGTCGCTGCTCACTGTCATTTACATGGTCTGGTGCATCGAGATATGAAACCTGAG
NaCDPK4	AATTTTCTCTTTAAATC <mark>TC</mark> CAAAG <mark>GA</mark> GGATTC <mark>A</mark> CCATT G AA <mark>C</mark> GCCACAGATTTTGGTCTT
NaCDPK5	AATTTTCTCTTTAAATC <mark>CT</mark> CAAAG <mark>AT</mark> GGATTC <mark>G</mark> CCATT <mark>A</mark> AA <mark>A</mark> GCCACAGATTTTGGTCTT
NaCDPK4	TCAGACTTCATAAGACCAGGGAAGAAGTTCCAAGATATTGTTGGCAGTGCATATTACGTA
NaCDPK5	TCAGACTTCATAAGACCAGGGAAAAATTCCAAGACATTGTTGGCAGTGCATATTATGTA
NaCDPK4	GC <mark>C</mark> CCAGAGGTATTAAAGCGTAGATCAGGACCTGAATCAGATGTCTGGAGCATTGGTGT
NaCDPK5	GCCCC <mark>G</mark> GAGGT <mark>G</mark> TTAAAGCGTAGATCAGGACCTGAATCAGATGTATGGAGTATAGGTGTA
NaCDPK4	ATTACATACATTTTGCTCTGTGGCCCGTCGGCCCTTCTGGGATAAAACAGAGGATGGCATA
NaCDPK5	ATTACATACATTTTGCTATGTGGTCGTCGGCCTTTCTGGGACAAAACTGAGGATGGTATA
NaCDPK4	TTCAAGGAGGT <mark>AC</mark> TA <mark>A</mark> GAAACAAGCCTGATTTTTGTCGCAAGCC <mark>C</mark> TGGCCAA <mark>CT</mark> ATAAGC
NaCDPK5	TTCAAGGAGGT <mark>CT</mark> TA <mark>C</mark> GAAACAAGCCTGATTTTCGTCGCAAGCCATGGCCAA <mark>AC</mark> ATAAGC
NaCDPK4	AACAGTGCTAAAGATTTTGTTAAGAAATTACTGGTGAAGGATCCTCGCGCTAGACTTACT
NaCDPK5	AACAGTGCTAAAGATTTTGTAAAGAAATTACTGGTGAAGGATCCCCGCGCGCTAGACTTACT
NaCDPK4	GCTGCCCAGGCCCTATCGCATCCATGGGTCCGCGAAGGAGGTGATGCATCTGAGATTCCA
NaCDPK5	GCTGCTCAGGCCTTATCGCATCCATGGGTCCGAGAAGGAGGTGATGCATCTGAGATTCCA
NaCDPK4	CT <mark>G</mark> GACATTTC <mark>C</mark> GTCTTATCAAACATGCGACAATTTGTCAAGTATAGTCGATTAAAACAG
NaCDPK5	CTCGACATTTCTGTTTTATCCAACATGCGGCAATTTGTCAGATATAGTCGCCTAAAACAG
NaCDPK4	TTTGCTTTACGGGCATTGGCTAGTACAGTTGATGAGGAGGAGCTGGCAGGTGTCCGGGAT
NaCDPK5	TTTGCTTTACGGGCGTTAGCTAGCACACTTGATGAGGAGGAGCTCTCTGATCTGAA

NaCDPK4	CA <mark>G</mark> TTTTCTGCAATTGACGTGGATAAAAATGGTGTCATTAGCCTTGAAGAAATGAGACAG
NaCDPK5	CAATTTTCTGCAATTGATGTGGATAAGAATGGTGTCATCAGTCTTGAAGAAATGAGACAG
NaCDPK4	GCCCTTGCTAAGGATCTTCCCTGGAAGATGAAAGAGTCACG <mark>G</mark> GTTCTTGAGATTCTTCAA
NaCDPK5	GCCCTTGCCAAGGATCTCCCCATGGAAAATGAAAGAGTCACGAGTTCTTGAGATTCTTCAA
NaCDPK4	GCGATTGATGGCAACACAGATGGGCTAGTTGATTTCCCAGAGTTTGTCGCAGCCACTCTA
NaCDPK5	GCGATTGATAGTAACACTGATGGGCTTGTTGATTTCCCCGGAGTTTGTCGCCGCCACTCTA
NaCDPK4	CATGTCCATCAGTTGGAGGAGCATAATTCTACAAAATGGCAG <mark>G</mark> AAAGATC <mark>G</mark> CAAGCTGCT
NaCDPK5	CATGTCCATCAGTTGGAGGAGCATAATTCTACAAAATGGCAG <mark>C</mark> AAAGATCACA <mark>G</mark> GCTGCT
NaCDPK4	TTTGAGAAATTTGATGTTGATAGAGATGGATTCATAACTCCTGAAGAACTTA <mark>G</mark> AATGCAT
NaCDPK5	TTTGAGAAATTTGATGTTGATAGAGATGGATTCATAACTCCTGAAGAACTTA <mark>A</mark> AATGCA <mark>C</mark>
NaCDPK4	ACCGGCCTAAACGGCTCCATAGACCCACTTCTAGAAGAAGCAGATATCGACAAAGATGGG
NaCDPK5	ACCGGTTTTGAAAGGCTCGATAGATCCACTTTTAGACGAAGCCGACATTGACAAAGACGGG
NaCDPK4	AAGATAAGC <mark>T</mark> TGTCAGAATT <mark>T</mark> CGTAGGCTT <mark>C</mark> TAAGAACTGC <mark>A</mark> AGTATGAGTTCA <mark>AGG</mark> ATG
NaCDPK5	AAGATAAGC <mark>C</mark> TGTCAGAATT <mark>C</mark> CGTAGGCTTTTAAGAACTGCTAGTATGAGTTCA <mark>CCA</mark> A <mark>CT</mark>
NaCDPK4	GTGA <mark>CTAG</mark> TCCA <mark>ACTGTTAGA</mark> GGCTCT <mark>CG</mark> GAAA <mark>AGTTAG</mark>
NaCDPK5	GTGA <mark>GAGA</mark> TTCA <mark>CGGAGAAAT</mark> GTAGCTTTGTAA

Supplemental Figure S8. Sequences used for preparing VIGS constructs.

The first 190 bp of *NaCDPK4* and *NaCDPK5* coding sequences were used to construct pTV-NaCDPK4 and pTV-NaCDPK5 (indicated by the yellow and green bar, respectively). The sequence of *NaCDPK5* under the purple bars was used to prepare pTV-NaCDPK4/5.

С

Supplemental Figure S9. VIGS-NaCDPK4/5 but not VIGS-NaCDPK4 or VIGS-NaCDPK5 shows developmental defects.

(A) Fifty-five days old EV, VIGS-NaCDPK4, VIGS-NaCDPK5, and VIGS-NaCDPK4/5plants. (B) Sixty-five days old EV and VIGS-NaCDPK4/5. (C) Flower buds ofVIGS-NaCDPK4/5 plants. Red arrows indicate aborted buds which had completely dried out.

Supplemental Figure S10. Silencing *NaCDPK4* alone does not result in enhanced levels of wounding- and herbivory-induced defensive secondary metabolites and insect resistance. Wild-type (WT) and IRcdpk4 (lines IRcdpk4-6 and IRcdpk4-8) were wounded with a pattern wheel and 20 μ L of water or *M. sexta* OS were applied to wounds (W+W and W+OS, respectively). Concentration (mean ± SE) of (**A**) 17-hydroxygeranyllinalool diterpene glucosides (HGL-DTGs) and (**B**) caffeoylputrescine (CP), and (**C**) activity of trypsin proteinase inhibitors (TPIs) were quantified in plants 3 days after treatment; non-treated plants severed as controls. (**D**) Masses of *M. sexta* grown on WT and IRcdpk4 over 10 days (Student's *t*-test; P > 0.1, N =5).

Supplemental Figure S11. Compromising the accumulation of JA in IRcdpk4/5 plants abolishes herbivore defenses.

M. sexta larvae were reared on wild-type (WT), IRcdpk4/5-1, ovJMT, and IRcdpk4/5-1×ovJMT. Concentration (mean ± SE) of (A) 17-hydroxygeranyllinalool diterpene glucosides (HGL-DTGs) and (B) caffeoylputrescine (CP), and (C) activity of trypsin proteinase inhibitors (TPIs) were quantified in plants that had been fed by *M. sexta* for 9 days.
(D) The masses of *M. sexta* on day 6 and 9. (E) JA levels. Plants were wounded with a pattern wheel and 20 µL of *M. sexta* OS were applied to wounds immediately. JA contents were

determined in samples collected 1 h after treatment. Asterisks indicate significant differences between WT and IRcdpk4/5-1, ovJMT, or IRcdpk4/5-1×ovJMT plants (Student's *t*-test; *, P < 0.05; **, P < 0.01; ***, P < 0.001). n.d. = not detected.

Supplemental Figure S12. IRcdpk4/5 plants have increased levels of SIPK activity but not abundance.

(A) MAPK activity assay in W+OS-treated WT, IRcdpk4/5-1, and IRcdpk4/5-2 plants. Note: each sample was pooled from 5 biological replicates. (B) MAPK activity levels in WT, IRcdpk4/5-1, and IRcdpk4/5-2 samples 30 min after W+OS treatment (4 biological replicates each). Right panel: quantification of relative band intensities (mean \pm SE) of SIPK (the average intensity of WT samples was designated as 1); asterisks represent significant difference between WT and IRcdpk4/5 plants (N = 4, Student's *t*-test; **, P < 0.01; ***, P < 0.001). (C) Protein blotting analysis of SIPK levels. Total proteins from wild-type (WT), IRcdpk4/5 (line IRcdpk4/5-1), and IRsipk were separated on a SDS-PAGE gel and were subsequently transferred to a PVDF membrane. Anti-SIPK antibody was used to detect the levels of SIPK protein. CBB: photograph of the RuBisCO large subunit that was visualized by staining the gel with Coomassie Brilliant Blue.

Supplemental Figure S13. SIPK/MPK6 and WIPK/MPK3 over-activation is dependent on the high JA levels and JA signaling.

0

0.5

Time (h)

1

(A) MAPK activity levels in wild-type (WT), IRcdpk4/5-1, IRcoi1, and IRcdpk4/5-1×IRcoi1 plants 30 min after being treated with W+OS (3 biological replicates each). Right panel: quantification of relative band intensities (mean \pm SE) (the average intensity of WT samples was designated as 1); asterisks represent significant difference between WT and other plants (N = 3, Student's *t*-test; *, P < 0.05; **, P < 0.01). (**B**) MAPK activity in wounded

Arabidopsis Col-0 and *dgl-D* mutant. Col-0 and *dgl-D* were wounded with a pattern wheel and MAPK activity was determined in samples harvested at indicated times using an in-gel kinase assay (2 biological replicates each).Wild-type (Col-0) and *dgl-D* plants were wounded with a pattern wheel, and JA levels (mean \pm JA) were determined in samples collected at indicated times (N = 5). (C) JA levels in wild-type and *dgl-D* Arabidopsis plants. Wild-type (Col-0) and *dgl-D* plants were wounded with a pattern wheel, and JA levels (mean \pm JA) were determined in samples collected at indicated times (N = 5).