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Proof of Theorem 1.

For ease of presentation, we assume p = 0, and remark that this result holds for all choices of 0 ≤ p < 1.
Let G be a graph of n nodes and maximum degree ∆. Let m be the number of matched nodes in the
smallest maximal matching of G. For t ≥ 0, denote by Wt the set of nodes of G which are unmatched
and have at least an unmatched neighbor at the beginning of round t, and let |Wt| be the cardinality of
Wt. Also, let Mt be the matching of G obtained by the Prudence algorithm at the beginning of round
t and Nt be the number of nodes matched by Mt. For t ≥ 0, define the random variable

Dt = m−Nt.

We devote the rest of the proof to showing that

E[Dt] ≤ (1− (∆ + 1)−3)tE[D0] (1)

The theorem then follows by the observations that E[D0] ≤ n and that any maximal matching is at least
a 1/2-approximation of the maximum matching.

To prove (1), we will first show that E[Bt(Wt)|Wt] ≥ (∆ + 1)−3|Wt|, where Bt(Wt) is the number
of nodes in Wt that match with nodes in Wt during round t (here the expectation is taken over the
randomness of the algorithm during round t). For u ∈ Wt, let Zt(u) be the indicator random variable
that takes value 1 if and only if u gets matched with a node in Wt during round t. By linearity of
expectation, we have that

E[Bt(Wt)|Wt] =
∑
u∈Wt

E[Zt(u)] =
∑
u∈Wt

Pr(Zt(u) = 1).

Let At be the set of nodes u ∈ Wt such that (i) u has no incoming or outgoing request to nodes in Wt,
and (ii) all neighbors v ∈ Wt of u have an incoming request. Let Āt = Wt \ At. For u ∈ At, we have
that Pr(Zt(u) = 1) = 0, as unmatched nodes prefer neighbors who requested them over other unmatched
neighbors. On the other hand, for u ∈ Āt, we have Pr(Zt(u) = 1) ≥ ∆−2. To see this, note that a
pending request involving u (if any) will be honored with probability at least ∆−2; if no such request
exists, the co-occurrence of the event of u requesting a neighbor with no incoming request and of that
neighbor requesting u happens with probability at least ∆−2. By definition of At, no two nodes in At
can be neighbors. Also, by definition of Wt, every node u ∈ Wt has at least one neighbor in Wt. These
two facts imply that |Āt| ≥ (∆ + 1)−1Wt. We can conclude that E[Bt(Wt)|Wt] ≥ (∆ + 1)−3|Wt|.

We now relate Dt+1 to Bt(Wt). First, note that Dt+1 ≤ Dt − Bt(Wt). By itself, this bound is not
strong as Wt can be small. However, when Wt is small, the current matching must be close to a maximal
matching. Indeed, by considering the union of Mt and any maximal matching of Wt, we have that
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m ≤ Nt + |Wt|. This implies that Dt = m−Nt ≤ |Wt| and hence Dt+1 ≤ Dt−Bt(Wt) ≤ |Wt| −Bt(Wt).
Therefore, we have

Dt+1 ≤ Dt −Bt(Wt),

Dt+1 ≤ |Wt| −Bt(Wt).

By taking the expectations with respect to the randomness of the algorithm during round t, we get

E[Dt+1|Wt, Dt] ≤ Dt − E[Bt(Wt)|Wt] ≤ Dt − (∆ + 1)−3|Wt|,
E[Dt+1|Wt, Dt] ≤ |Wt| − E[Bt(Wt)|Wt] ≤ |Wt| − (∆ + 1)−3|Wt| = (1− (∆ + 1)−3)|Wt|.

Now, by taking the expectation with respect to the randomness of the algorithm during rounds up to t,
we obtain

E[Dt+1] ≤ E[Dt]− (∆ + 1)−3E[|Wt|],
E[Dt+1] ≤ (1− (∆ + 1)−3)E[|Wt|].

Letting dt = E[Dt], wt = E[|Wt|], and α = (∆ + 1)−3, the bounds above can be rewritten as

dt+1 ≤ min {dt − αwt, (1− α)wt} .

To conclude the proof of (1), we show by induction that dt ≤ d0(1 − α)t. For t = 0, as d0 ≤ w0, we
have d1 ≤ d0 − αw0 ≤ (1 − α)w0. Now, let us consider any t ≥ 1 and distinguish between the cases of
wt ≤ d0(1 − α)t and wt > d0(1 − α)t. If wt ≤ d0(1 − α)t, we have dt+1 ≤ (1 − α)wt ≤ d0(1 − α)t+1.
Otherwise, if wt > d0(1− α)t, using the induction hypothesis, we have that

dt+1 ≤ dt − αwt ≤ d0(1− α)t − αwt ≤ d0(1− α)t − d0α(1− α)t = d0(1− α)t+1,

which completes the proof.

Proof of Theorem 2.

For ease of presentation, we assume p = 0, and remark that this result holds for all choices of 0 ≤ p < 1.
Let G be a graph of n nodes, maximum degree ∆, and maximum matching of size OPT. We will consider
the unmatched nodes as particles randomly moving on the nodes of the network as per the algorithm
choices. To see how the particle move, consider the particle positioned at any unmatched node u. If u
requests a matched neighbor v and v accepts the requests, then the particle will move to v’s old partner
(which is left unmatched). If u requests an unmatched neighbor z and z accepts the request, then both
the particles at u and z will dissolve. Note that when two particles dissolve the size of the matching
increases by one.

An augmenting path is a path of odd length which alternates matched and unmatched edges and
whose extreme edges are unmatched. Observe that by switching each unmatched edge of an augmenting
path into a matched edge, and viceversa, the size of the matching increases by one.

We split the rounds into epochs of b1/εc rounds each. We claim that if at the beginning of any epoch
the size of the matching is less than a (1− ε)OPT, then the size of the matching increases by at least one
by the end of that epoch with probability at least ∆−2/ε. To prove the claim, consider the first round
of any epoch and let u0, u1, . . . , u` be any shortest augmenting path at the beginning of that round. It
must be that ` < 2(ε−1 − 1), otherwise Lemma 1 would imply that the size of the matching is at least
a `+1
`+3 ≥ 1 − ε fraction of OPT. For ` = 1, u0 and u1 will match with each other during the first round

with probability at least ∆−2, hence the claim is true. For ` = 3, u0 and u3 will request respectively
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u1 and u2 with probability at least ∆−2 during the first round of the epoch, and these requests will be
accepted in the second round with probability at least ∆−2 — hence, the size of the matching increases
by one within 2 rounds with probability at least ∆−4. Now consider 5 ≤ ` < 2(ε−1 − 1). We have that
two particles occupy the nodes u0 and u` at the extremes of the augmenting path. With probability
at least ∆−2, u0 requests to match with u1 during the first round and u1 accepts in the second round,
making the corresponding particle move from u0 to u2. A similar argument yields that the particle at
u` moves to u`−2 within two rounds with probability at least ∆−2. Moreover, as the augmenting path
under consideration is a shortest augmenting path, nodes u2, . . . , u`−2 have no unmatched neighbors
at the beginning of the first round and hence do not receive any matching request during that round.
Therefore, with probability at least ∆−4, at the end of the second round the nodes u2 and u`−2 are
unmatched whereas nodes u3, . . . , u`−3 did not change their partner. That is, the length of the shortest
path at the beginning of the third round of the epoch is at most `− 4 with probability at least ∆−4. By
means of the same argument, we can conclude that with probability at least (∆−4)`/4 > ∆−2/ε, all nodes
in an augmenting path are matched within `/2 ≤ b1/εc rounds, which proves the claim.

For any epoch i, we now associate a binary random variable Xi which takes on value 1 with probability
p = ∆−2/ε. The claim guarantees that the size of the matching after T epochs is at least min{(1 −
ε)OPT,

∑T
i=1Xi}. Also, as successive rounds of the algorithm are independent, the Xi’s are independent

random variables. For any 0 < δ ≤ 1, the Chernoff bound states that

Pr

[
T∑
i=1

Xi < (1− δ)Tp

]
< exp(−Tpδ2/2).

For any c ≥ 1/2, by setting T := cn∆−2/ε and δ := ε, the above yields that the size of the matching after
T epochs (i.e., after T b1/εc ≤ c

εn∆2/ε rounds) is at least min{(1− ε)OPT, (1− ε)cn} = (1− ε)OPT with
probability at least 1− exp(−cε2n/2).

Proof Theorem 3.

Analysis.

For ease of presentation, we assume p = 0, and remark that this result holds for all choices of 0 ≤ p < 1.
We say that the nodes {ai : 1 ≤ i ≤ n} ∪ {bi : 1 ≤ i ≤ n} constitute the upper half of Gn, and the
remaining ones constitute the lower half of Gn. Let M =M1 ∪M2 be the set of all matchings of Gn of
size 2n − 1, where M1 is the set of matchings of size 2n − 1 in which the two unmatched nodes are in
opposite halves of Gn, and M2 =M\M1 are the remaining ones.

Our goal is to show that the Prudence algorithm requires 2Ω(n/ log2 n) rounds with high probability
to reach the perfect matching of Gn when starting from any matching in M1. We first prove certain
properties for the matchings in M1. We then establish a correspondence between the Markov chain
over matchings induced by the Prudence algorithm and a classical random walk on the tree T ∗n . In
particular, we show that the hitting time of the root of T ∗n is a lower bound on the number of rounds to
reach the perfect matching of Gn.

Properties of matchings in M1.

We begin by characterizing the matchings in M1.

Lemma 1 Consider any matching M ∈ M1, and let ak, b` be the unmatched nodes in the upper and
lower half of Gn, respectively. Then, the following properties hold:

1. For all i < k and i > `, the matching M contains the edges (ai, bi).
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2. If k < n, M contains the edge (an, bj) for some 1 ≤ j < n. Similarly, if ` > n + 1, M contains
the edge (ai, bn+1) for some n + 1 < i ≤ 2n. That is, the nodes an and bn+1 can be matched only
through non-horizontal edges.

3. If in its upper half M contains a pair of edges (ai1 , bj1), (ai2 , bj2) with i1 6= j1, i2 6= j2, and
1 ≤ i1 < i2 ≤ n, then 1 ≤ k ≤ j1 < i1 ≤ j2 < i2 ≤ n. Similarly, if in its lower half M
contains a pair of edges (ai1 , bj1), (ai2 , bj2) with i1 6= j1, i2 6= j2, and n + 1 ≤ j1 < j2 ≤ 2n, then
n+ 1 ≤ j1 < i1 ≤ j2 < i2 ≤ ` ≤ 2n. That is, non-horizontal matching edges do not cross.

Proof. To prove the first property, we show that (ai, bi) ∈ M for all i < k (the claim for i > ` can
be proven in the same way). We show by induction on 1 ≤ j ≤ k − 1 that (ai, bi) ∈M for all i ≤ j. For
j = 1, we have that a1 must be matched to b1 (its only neighbor), and therefore the claim holds true.
Suppose the claim holds true for some j < k− 1. By the inductive assumption we have that (ai, bi) ∈M
for all i ≤ j. As (aj+1, bi) ∈ E if and only if i ≤ j + 1, aj+1 must be matched to bj+1, and therefore the
claim holds for j + 1.

The second property follows by observing that M ∈ M1 implies that the bridge edge (an+1, bn) is
in M , and therefore an cannot be matched to bn, and an+1 cannot be matched to bn+1 in M . To see
this, suppose by contradiction that (an+1, bn) /∈M . Then, bn must be matched to an (its only neighbor
besides an+1), and a node in {a1, . . . , an−1} is unmatched. Then, each of the n−1 nodes in {b1, . . . , bn+1}
must be matched with one of the n−2 matched nodes in {a1, . . . , an−1}, generating a contradiction. This
implies that (an+1, bn) ∈M .

To prove the third property, assume that, in its upper half, M contains edges (ai1 , bj1), (ai2 , bj2) with
i1 6= j1, i2 6= j2, and 1 ≤ i1 < i2 ≤ n. Then, it must be that j1 < i1 and j2 < i2. Moreover, Property 1
implies that k ≤ j1. Therefore, it only remains to show that i1 ≤ j2. Suppose by contradiction that
i1 > j2. As i1 > j1 ≥ k and j1 6= j2, it must be that i1 ≥ k + 2. As bj2 is matched to ai2 and
i2 > i1, we have that each of the i1 − k ≥ 2 nodes in {ak+1, . . . , ai1} must be matched to one of the
i1 − k − 1 nodes in {bk, . . . , bi1−1}\{bj2}, generating a contradiction. This implies that i1 ≤ j2 and
therefore 1 ≤ k ≤ j1 < i1 ≤ j2 < i2 ≤ n. The claim in Property 3 regarding the lower half of M is
similarly proved.

It follows from Lemma 1 that a matching M ∈ M1 can be uniquely reconstructed by specifying the
two unmatched nodes and the nodes in {a1, . . . , an} ∪ {bn+1, . . . , b2n} whose matching edges are non-
horizontal. To see this, consider the upper half of Gn: assume aj0 6= an is the unmatched node and
S = {j1, . . . , jm}, with 1 ≤ j0 < j1 < j2 < . . . < jm = n, is the set of indexes of the left nodes whose
matching edges are non-horizontal. (Note that n ∈ S by Lemma 1.) Then, j0 < j1 and (ai, bi) ∈ M
for all i such that i /∈ S ∪ {j0} and 1 ≤ i ≤ n. Hence, it necessarily holds that (aji , bji−1) ∈ M for all
1 ≤ i ≤ m. This completes the construction of the matching in the upper half of Gn. A similar argument
can be applied to the lower half. These two arguments imply the following lemma.

Lemma 2 There exists a bijection ψ between matchings in M1 and elements of P × P ′, where

P =
{

(x, S) : x ∈ {1, . . . , n− 1}, {n} ⊆ S ⊆ {x+ 1, . . . , n}
}
∪ {(n, ∅)},

P ′ =
{

(y, S′) : y ∈ {n+ 1, . . . , 2n}, {n+ 1} ⊆ S′ ⊆ {n+ 1, . . . , y − 1}
}
∪ {(n+ 1, ∅)}.

The tree T ∗
n .

Definition 1 Let T1 be a labelled rooted tree with a singleton node with label 1. Inductively, for 2 ≤ i ≤
n− 1, let Ti be the labelled rooted tree whose root is labelled with i and its children are T1, . . . , Ti−1. We
define T ∗n to be the tree with an unlabelled root whose only child is Tn (also see Figure S1). Let r∗ denote
the root of T ∗n .
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We show that the hitting time of r∗ when starting at any node u 6= r∗ is exponential with high
probability. For a node 6= r∗, we call the edge that connects u to its parent u’s exit edge. For any subtree
Ti ⊂ T ∗n , let Zi be the random variable denoting the number of steps that it takes for a walk starting at
the root of Ti to “exit” Ti. The following lemma provides an exponential lower bound on Zi

Lemma 3 There exist positive constants α, γ > 0 such that, for all i ≥ 2,

Pr[Zi ≥ γ · 2i/(α log2 i)] ≥ 1− 1

log i
.

Proof. We proceed by induction on i. For convenience, define g(i) = α log2 i and f(i) = γ · 2i/g(i) for
some α, γ > 0. For any constant α > 0, there exists a small enough constant γ > 0 such that f(i) ≤ 1;
therefore, as Zi ≥ 1 with probability 1, the claim holds trivially for any i ≤ i∗, where i∗ is a suitable
large constant.

Now consider any i ≥ i∗ and suppose the claim holds up to i− 1. Every time the walk is on the root
of Ti, it exits Ti with probability 1/i. Therefore, letting Et be the event that the first t times the walk is
on the root of Ti it does not exit Ti, we have Pr[Et] ≥ 1− t/i. Let t = i/(2 log i), and let Dj , 1 ≤ j ≤ t,
be the event that, when it is on the root of Ti for the j-th time, the walk moves to the root of one of the
subtrees Ti−g(i), . . . , Ti−1 and takes at least f(i− g(i)) steps to exit that subtree. For 1 ≤ j ≤ t, we have

Pr[Dj | Et] ≥
g(i)

i
· Pr[Zi−g(i) ≥ f(i− g(i))]

≥ g(i)

i
·
(

1− 1

log(i− g(i))

)
,

by the induction hypothesis on Zi−g(i). Letting χj be the indicator function of the event Dj for 1 ≤ j ≤ t,
the probability that at least two of the events Dj happen, given Et, is lower bounded by:

Pr

 t∑
j=1

χj ≥ 2

∣∣∣∣∣ Et
 ≥ Pr

 t/2∑
j=1

χj ≥ 1,

t∑
j=t/2+1

χj ≥ 1

∣∣∣∣∣ Et
 = Pr

 t/2∑
j=1

χj ≥ 1

∣∣∣∣∣ Et
2

.

By union bound, we can write

Pr

 t/2∑
j=1

χj ≥ 1

∣∣∣∣∣ Et
 ≥ 1−

t/2∏
i=1

(1− Pr[Dj |Et])

≥ 1−
(

1− g(i)

i

(
1− 1

log(i− g(i))

))t/2
≥ 1− exp

[
−α log i

4

(
1− 1

log(i− g(i))

)]
≥ 1− 1

iα/8
,

where the last step holds for i sufficiently large so that log(i− g(i)) ≥ 2. This implies that

Pr

 t∑
j=1

χj ≥ 2

∣∣∣∣∣ Et
 ≥ (1− 1

iα/8

)2

≥ 1− 2

iα/8
.

Therefore, we conclude that

Pr[Zi ≥ 2 · f(i− g(i))] ≥ Pr

 t∑
j=1

χj ≥ 2

 ≥ Pr

 t∑
j=1

χj ≥ 2

∣∣∣∣∣ Et
Pr[Et] ≥

(
1− 2

iα/8

)(
1− t

i

)
≥ 1− 1

log i
,
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where the last step holds by choosing α sufficiently large. The claim now follows since 2·f(i−g(i)) ≥ f(i).

Note that any random walk starting at any node u 6= r∗ has to exit Tn before hitting r∗. Therefore,
an application of Lemma 3 to Tn yields a lower bound to the hitting time of r∗ when starting at any
node u 6= r∗.

Corollary 1 The hitting time of r∗ of a random walk starting at any node u 6= r∗ is 2Ω(n/ log2 n) with
high probability.

Proof of of Theorem 3.

Figure 1. The bad graph. The “bad” graph Gn for n = 3. One of the “bad” matchings of
Theorem 3 is highlighted in red.

For t ≥ 0, letM(t) be the matching at the beginning of round t and assumeM(0) ∈M1. To analyze
the convergence to a perfect matching, we will consider on the event thatM(t) /∈M1. Note that in order
for this event to happen, the bridge edge (an+1, bn) of Gn will have to swap out of the matching. Let
E(t) be the event that an requests bn during round t. Similarly, let E′(t) be the event that bn+1 requests
an+1 during round t. Define the random variables

τn = min{t : E(t) happens},
τ ′n = min{t : E′(t) happens},
τ∗n = min{τn, τ ′n}.

Then τ∗n is a lower bound on the number of rounds to reach the perfect matching. Lemma 4 below states
that, for some c > 0,

Pr
[
τn ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ ′n] = o(1) and Pr
[
τ ′n ≤ 2cn/ log2 n

∣∣∣ τ ′n ≤ τn] = o(1).

Then the main theorem follows as

Pr
[
τ∗n ≤ 2cn/ log2 n

]
= Pr

[
τ∗n ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ ′n]Pr [τn ≤ τ ′n] + Pr
[
τ∗n ≤ 2cn/ log2 n

∣∣∣ τ ′n < τn

]
Pr [τ ′n < τn]

= Pr
[
τn ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ ′n]Pr [τn ≤ τ ′n] + Pr
[
τ ′n ≤ 2cn/ log2 n

∣∣∣ τ ′n < τn

]
Pr [τ ′n < τn]

= o(1).

Lemma 4

Pr
[
τn ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ ′n] = o(1) and Pr
[
τ ′n ≤ 2cn/ log2 n

∣∣∣ τ ′n ≤ τn] = o(1).

Proof. We will prove the first bound. The second one follows by symmetry. Conditioning on the
event that τn ≤ τ ′n, we will analyze the matching in the upper half of Gn induced byM(t). Since τn ≤ τ ′n,
M(t) ∈M1 as long as E(t) does not happen. By Lemma 2, it is equivalent to study the Markov process
{(X(t),S(t)), t ≥ 0} over P ∪{(⊥, ∅)}, where (X(t),S(t)) is defined as the first marginal of ψ(M(t)), and
the additional state (⊥, ∅) is reached when the event E(t) happens. That is, conditioning on the event
τn ≤ τ ′n, it follows that

τn = min{t : (X(t),S(t)) = (⊥, ∅)}. (2)
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If τn ≤ τ ′n and (X(t),S(t)) 6= (⊥, ∅), all the neighbors of the unmatched node in the upper half of
Gn are matched at the beginning of round t, and hence are equally likely to be requested during round
t. Therefore, the Markov process (X(t),S(t)) has the following transition probabilities.

Pr
[
(X(t+ 1),S(t+ 1)) = (x′, S′)

∣∣∣ (X(t),S(t)) = (x, S) 6= (⊥, ∅), τn ≤ τ ′n
]

=
1

x
,

for any

(x′, S′) ∈


{

(x′′, S ∪ x) : x′′ < x} ∪
{

(min(S), S\min(S))
}
, if x < n (and S 6= ∅){

(x′′, S ∪ x) : x′′ < x} ∪
{

(⊥, ∅)
}
, if x = n (and S = ∅)

The case (x′, S′) ∈ {(x′′, S∪x) : x′′ < x} represents the scenario in which the unmatched node ax requests
a node through a non-horizontal edge: in this case, no progress is made as the unmatched node in the
next round will be further away from an. If the unmatched node ax requests the node on its horizontal
edge, the next unmatched node will be closer to an. In the special case (x, S) = (n, ∅), if the unmatched
node requests the neighbor on its horizontal edge, then the bridge edge is swapped out of the matching
and M(t+ 1) /∈M1.

We will now show that the Markov chain {(X(t),S(t)), t ≥ 0} is equivalent to the random walk on
T ∗n . For a node v of T ∗n , let xv be its label and Sv be the set of labels of its ancestors. Define the function
φ from nodes of T ∗n to states of the chain as follows:

φ(v) =

{
(⊥, ∅), v = r∗

(xv, Sv), v 6= r∗

It is easy to verify that φ is a bijection. Two nodes u and v are adjacent in T ∗n if and only if there
is a nonzero transition probability between the states φ(u) and φ(v). To see this, suppose there is a
nonzero transition probability from (xu, Su) to (xv, Sv) in the Markov chain. Let u = φ−1(xu, Su) and
v = φ−1(xv, Sv) be the corresponding nodes in T ∗n . There are two cases: (a) if xv < xu then Sv = Su∪xu,
and v is a child of u; (b) if xv > xu then xv = min(Su), Sv = Su\min(Su), and v is the parent of u.
The other direction is analogous. Therefore, conditioning on τn ≤ τ ′n and (X(0),S(0)) 6= (⊥, ∅), we
can conclude that min{t : (X(t),S(t)) = (⊥, ∅)} equals the hitting time of r∗ for a random walk on T ∗n
starting at the node φ−1(X(0),S(0)) 6= r∗. The lemma follows by equation (2) and Corollary 1.


