

## Supplemental Figure 1. Codon optimization and far UV CD spectra of forward and retro peptides.

(A) The sequences of synthetic codon optimized TPs. The restriction sites are underlined.

(B) The relative adaptiveness (w) of the codons from SSF, SSR, FDF, and FDR TPs. Black and green lines represent the w prior to and after codon optimization, respectively. Since the reverse sequences do not exist in nature, there is no black trace. (C) CD spectra of SSF, SSR, FDF and FDR. The line colors represents percent TFE. Data was collected at 25°C.



(A) Localization patterns of transiently expressed TP-YFP fusion proteins in *Arabidopsis* seedlings were compared to the CFP plastid marker constructs (NtSSF-20-CFP). Forward peptide driven YFP proteins showed strong localization in the chloroplasts, whereas retro-peptide driven YFP proteins stayed mostly outside of the chloroplasts. The results are similar to those from onion epidermis and tobacco leaves (Figure 5A and C). Bar, 10  $\mu$ m. (continue next page)

## Supplemental Figure 2. (Continue)

(B) Plastid targeting of fluorescence proteins by extended forward and retro TP constructs. The extension 10 aa sequences representing the first 10 aa sequence of the opposite TP were added at the N-terminus of each TP-YFP fusion constructs. In vivo plastid targeting was observed in transiently expressed onion epidermis. Left labels indicate the types of fusion proteins. TP indicates TP as shown on the top labels. R10 marked the first 10 aa sequence from the opposite TP. MtoA marked the substitution of internal Met with Ala. Ratio of plastid YFP/ cytosolic YFP intensities were showed in Figure 6A. Bars, 10  $\mu$ m.

**(C)** Accumulation of the plastid targeted YFP proteins increase slightly over time. Ratio of plastid/ cytosolic YFP intensities after 12 and 24 h after transformations were shown. Left labels show the TP in the constructs. Suffix 10 indicated only first 10 aa sequence. Data was collected from 20 cells except SSF10-SSR (24 h) and FDR10-FDF (24 h)





**Supplemental Table 1.** Codon adaptive indices of the competitors based on three codon usage tables of *E. coli*.

| DNA Sequences | Hénaut & Danchin <sup>ª</sup> | Carbone et al. <sup>⁵</sup> | Nakamura et al. <sup>c</sup> | Mean    | SD      |
|---------------|-------------------------------|-----------------------------|------------------------------|---------|---------|
| Wild-type FDF | 0.32557                       | 0.16813                     | 0.58672                      | 0.36014 | 0.21143 |
| Optimized FDF | 0.88172                       | 0.84682                     | 0.91045                      | 0.87967 | 0.03186 |
| Optimized FDR | 0.84668                       | 0.75238                     | 0.91127                      | 0.83678 | 0.07991 |
| Wild-type SSF | 0.33722                       | 0.21405                     | 0.54256                      | 0.36461 | 0.16596 |
| Optimized SSF | 0.82290                       | 0.74577                     | 0.85286                      | 0.80718 | 0.05525 |
| Optimized SSR | 0.78089                       | 0.67800                     | 0.83168                      | 0.76352 | 0.07830 |

<sup>a</sup> Hénaut, A., and A. Danchin. 1996. Analysis and predictions from *Escherichia coli* sequences, or *E. coli in silico. In Escherichia coli* and *Salmonella*: cellular and molecular biology. Vol. 2. F. Neidhardt and R. Curtiss, editors. ASM Press Washington, D.C. 2047-2066.

<sup>b</sup> Carbone, A., A. Zinovyev, and F. Kepes. 2003. Codon adaptation index as a measure of dominating codon bias. *Bioinformatics*. 19:2005-15.

<sup>c</sup> Nakamura, Y., T. Gojobori, and T. Ikemura. 2000. Codon usage tabulated from international DNA sequence databases: status for the year 2000. *Nucleic Acids Res.* 28:292.

| Program                   | Prediction                | SSF     | SSR    | FDF    | FDR    |
|---------------------------|---------------------------|---------|--------|--------|--------|
| ChloroD 1 1               | Chloroplast localization  | 0.573   | 0.559  | 0.556  | 0.548  |
| Chlorop 1.1               | Cleavage site             | 56      | 56     | 46     | 46     |
| IDSODT                    | Localization              | Cpst    | n/a    | Cpst   | Mito   |
| IFSURI                    | Target sequence           | ASMISSS | n/a    | MASTLS | MATVRG |
| C<br>M<br>Predotar<br>El  | Chloroplast localization  | 1       | 0.04   | 0.8    | 0      |
|                           | Mitochondria localization | 0.13    | 0.02   | 0.02   | 0.4    |
|                           | ER localization           | 0       | 0.01   | 0.01   | 0.04   |
|                           | Other localization        | 0.03    | 0.93   | 0.23   | 0.58   |
|                           | Chloroplast localization  | 1       | 0.99   | 1      | 0.1129 |
| ProdSI                    | Mitochondria localization | 0       | 0.0039 | 0.0002 | 0.6538 |
| Second Second             | Secreted protein          | 0.0004  | 0.0019 | 0.0005 | 0.0994 |
|                           | Cleavage site             | 33      | 38     | 47     | 55     |
| C<br>N<br>ProtComp F<br>N | Chloroplast localization  | 3       | 4.6    | 2.9    | 2.2    |
|                           | Mitochondria localization | 0       | 0.15   | 0.03   | 0      |
|                           | Plasma membrane           | 0       | 0      | 0.08   | 0      |
|                           | Nuclear localization      | 0       | 0.04   | 0      | 0      |
|                           | Peroxisome localization   | 0       | 0      | 0      | 0.77   |
|                           | Chloroplast localization  | 1       | 0.25   | 1      | 0.16   |
| Protein                   | Mitochondria localization | 0.02    | 0.3    | 0.01   | 0.82   |
| Prowler                   | Secreted protein          | 0       | 0.03   | 0      | 0      |
|                           | Other localization        | 0       | 0.42   | 0      | 0.01   |
| PSORT                     | Chloroplast stroma        | 0.81    | 0      | 0.77   | 0.2    |
|                           | Thylakoid space           | 0.965   | 0      | 0.957  | 0      |
|                           | Thylakoid membrane        | 0.651   | 0      | 0.574  | 0.2    |
|                           | Mitochondria matrix       | 0.853   | 0.1    | 0.461  | n/a    |
|                           | Nucleus                   | 0       | 0.3    | 0      | 0.3    |
|                           | Peroxisome                | 0       | 03     | 0      | 03     |

**Supplemental Table 2.** Subcellular targeting predictions of forward and reverse transit peptides. <sup>a,b</sup>

<sup>a</sup> Predictive scores shown in bold indicate the prediction is above threshold necessary for confident prediction. <sup>b</sup> Abbreviations used: Cpst, chloroplast; Mito, mitochondria; n/a, not applicable.

**Supplemental Table 3.** Rules applied during development of the heuristic FGLK motif detection.

| Rule | Definition <sup>a</sup>                                    |
|------|------------------------------------------------------------|
| 1    | FIW AND PIG AND KIR AND AIL AND SIT                        |
| 2    | FIW AND PIG AND KIR AND AIL                                |
| 3    | Any 4 of (F W, P G, K R, A L, T)                           |
| 4    | F W required, any 3 of (P G, K R, A L, T)                  |
| 5    | F W required, any 3 of (P G, K R, A L, S)                  |
| 6    | F W Y, P G                                                 |
| 7    | [FWPGKRALST] +, variable window, minimum 4                 |
| 8    | F W AND P G AND K R AND A L AND S                          |
| 9    | [FWYPGKRALST] +, variable window, minimum 4                |
| 10   | F W AND P G AND K R N AND A L AND S T                      |
| 11   | F W AND P G AND K R N AND A L V AND S variable window      |
| 12   | F W AND P G AND K R N AND A L AND S variable window        |
| 13   | F W AND P G AND K R N AND A L V AND S T                    |
| 14   | F W AND P G AND K R N AND A L V                            |
| 15   | F W L V AND P G AND K R N AND optional S T variable window |
| 16   | F W L V AND P G AND K R N AND S T                          |
| 17   | F W Y AND P G variable window                              |
| 18   | F (to generate logoplot for context)                       |
| 19   | FIWIY AND PIG                                              |
| 20   |                                                            |
| 21   | FIW AND PIG AND KIRINIQ AND AILIIV                         |
| 22   |                                                            |
| 23   |                                                            |
| 24   | FIW AND FIG AND KIR AND AILIV AND S                        |
| 25   | FIW AND PIG AND KIR AND AILIV AND SIT                      |
| 20   |                                                            |
| 20   |                                                            |
| 20   | F AND PIG AND KIR AND AIL AND SIT                          |
| 30   |                                                            |
| 31   |                                                            |
| 32   | F AND L AND PIG AND KIR AND SITIWIYIIM                     |
| 33   | F AND PIG AND K AND All AND SIT                            |
| 34   | F AND P AND KIR AND AIL AND SIT                            |
| 35   | F AND P AND K AND L AND SIT                                |
| 36   | F AND AIL AND PIG AND KIR AND SIT                          |

 $^{\rm a.}$  All rules exclude D and E; vertical bar '|' indicates alternation, any single residue; brackets indicate 'any of'; '+' means one or more

Supplemental Table 4. Curve fitting parameters for prSSU homologous binding data.

|                                            | Datasets                      |                               |                               |  |  |
|--------------------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|
| Filled values                              | 30 nM <sup>b</sup>            | 100 nM <sup>ь</sup>           | Global                        |  |  |
| K <sub>d</sub> (nM) <sup>c</sup>           | 153.8 (153.1) <sup>d</sup>    | 153.8 (153.1) <sup>d</sup>    | 153.8 (153.1) <sup>d</sup>    |  |  |
| 95% CI of K <sub>d</sub> (nM) <sup>c</sup> | 89.95 - 263.1 (92.12 - 254.4) | 89.95 - 263.1 (92.12 - 254.4) | 89.95 - 263.1 (92.12 - 254.4) |  |  |
| Nonspecific binding (%) <sup>c</sup>       | 0.3622 (0.3586)               | 0.3622 (0.3586)               | 0.3622 (0.3586)               |  |  |
| Bottom plateau (%) <sup>c,e</sup>          | 36.22 (35.86)                 | 10.87 (10.76)                 | -                             |  |  |
| R <sup>2</sup>                             | 0.9209 (0.9141)               | 0.8397 (0.7655)               | 0.9626 (0.9490)               |  |  |
| R <sup>2 f</sup>                           | 0.9208 (0.9142)               | 0.8398 (0.7647)               | -                             |  |  |

<sup>a.</sup> Model: Total binding = ((B<sub>max</sub> x [Hot])/([Hot]+[Cold]+K<sub>d</sub>))+(nonspecific binding x [Hot]).
<sup>b.</sup> Concentration of <sup>35</sup>S-prSSU.
<sup>c.</sup> Values are shared between 2 datasets.
<sup>d.</sup> Values from scintillation counting and autoradiograph (in parentheses).
<sup>e.</sup> Bottom plateau = nonspecific binding x [Hot].
<sup>f.</sup> R<sup>2</sup> generated from swapping the data and fitted parameters from scintillation counting and autoradiograph.

| Fitted Parameters                | Competitors |             |             |             |               |
|----------------------------------|-------------|-------------|-------------|-------------|---------------|
| Filled Parameters                | FDF         | FDR         | SSF         | SSR         | mSSU          |
| K <sub>i</sub> (nM) <sup>a</sup> | 2220        | 3735        | 2537        | 3091        | No Inhibition |
| 95% CI of K <sub>i</sub> (nM)    | 1516 – 3252 | 2587 – 5392 | 1752 – 3672 | 2023 – 4723 | -             |
| R <sup>2</sup>                   | 0.8763      | 0.8580      | 0.8565      | 0.8264      | -             |
| IC₅₀ (nM) <sup>b</sup>           | 3663        | 6164        | 4186        | 5101        | No Inhibition |
| 95% CI of IC₅₀ (nM)              | 2501 – 5366 | 4270 – 8898 | 2891-6060   | 3338-7794   | -             |
| R <sup>2</sup>                   | 0.8763      | 0.8580      | 0.8565      | 0.8264      | -             |

## Supplemental Table 5. Curve fitting parameters for competitive binding data.

<sup>a.</sup> Model: Total binding = Bottom + (Top-Bottom)/(1+10<sup>([Cold] - logIC50)</sup>). Where  $logIC_{50} = log (10^{logK_i} x (1 + [Hot]/K_d))$ . <sup>b.</sup> Model: Total binding = Bottom + (Top-Bottom)/(1+10<sup>([Cold] - logIC50)</sup>).

## Supplemental Table 6. Sequence of oligonucleotides used in cloning.

| Generated Construct     | Oligonucleotide<br>Name | Sequence <sup>a</sup>                                    |
|-------------------------|-------------------------|----------------------------------------------------------|
| DR SSE VED              | SSF_Nhel_F              | GTTGTTGCT <u>AGCATG</u> GCTTCTATGATTTCTTCTTCTG           |
| рво-оог-тгр             | SSF_Mscl_R              | GTTGTT <u>TGGCCA</u> CACCTGCATGCATTTAACACGACCGCCGTTGCTG  |
| DRS SSD VED             | SSR_Nhel_F              | GTTGTTGCT <u>AGCATG</u> TGTAAGGTACGTGGCGGTAACAGCACTATCTC |
| pb3-33R-TFF             | SSR_Mscl_R              | GTTGTTTGGCCACACCTGC ATTGCGCTCATGATGCTGGAGGAAGC           |
|                         | FDF_Nhel_F              | GTTGTT GCT <u>AGCATG</u> GCATCTACTCTGTCTACTCTGTCTG       |
| pb3-rDr-TFP             | FDF_Mscl_R              | GTTGTTTGGCCACACCTGC ATAGCAGTAACACGGCCGCGAGAACC           |
|                         | FDR_Nhel_F              | GTTGTTGCT <u>AGCATG</u> GCTACTGTTCGTGGTCGTTCTG           |
| pb3-rDR-TFF             | FDR_Mscl_R              | GTTGTTTGGCCACAC CTGCATGGCAGAGGTCAGGGAAGTC                |
| PR SSE10 SSR VED        | SSF10_F                 | CTAGCATGGCTTCTATGATTTCTTCTTCTGCCGTTG                     |
| pb3-33F10-33R-1FF       | SSF10_R                 | CTAGCAACGGCAGAAGAAGAAATCATAGAAGCCATG                     |
|                         | SSR10 F                 | CTAGCATGTGTAAGGTACGTGGCGGTAACAGCACTG                     |
| pb3-33K10-33F-1FF       | SSR10_R                 | CTAGCAGTGCTGTTACCGCCACGTACCTTACACATG                     |
|                         | FDF10_F                 | CTAGCATGGCATCTACTCTGTCTACTCTGTCTGTTG                     |
| PBS-FDF10-FDR-TFP       | FDF10_R                 | CTAGCAACAGACAGAGTAGACAGAGTAGATGCCATG                     |
|                         | T7 Universal            | TAATACGACTCACTATAGGG                                     |
| pBS-FDR10-FDR-1FP       | FDR10_Xbal_R            | GGTGGTTCTAGATGCACCAGAACGACCACG                           |
|                         | M13 Forward             | CGCCAGGGTTTTCCCAGTCACGAC                                 |
| All of MICA constructs  | Nos_R                   | CTTAACGTAATTCAACAGAA                                     |
| TRE SEE10 MtsA SSD VED  | SSF10_MtoA_SSR_F        | GCTTCTATGATTTCTTCTTCTGCCGTTGCGTGTAAGGTACGTGG             |
| pb3-33F10-1010A-33R-1FP | SSF10_MtoA_SSR_R        | CCACGTACCTTACACGCAACGGCAGAAGAAGAAATCATAGAAGC             |
| TRE SERIA MtsA SEE VER  | SSR10_MtoA_SSF_F        | CGGTAACAGCACTGCGGCTTCTAGCATTTCTTCTTCTGCC                 |
| PB3-35R10-MIOA-35F-1FP  | SSR10_MtoA_SSF_R        | GGCAGAAGAAGAAATGCTAGAAGCCGCAGTGCTGTTACCG                 |
|                         | FDF10 MtoA FDR F        | CTCTGTCTACTCTGTCTGTTGCGGCTACTGTTCGTGGTCG                 |
| pBS-FDF10-MIOA-FDR-TFP  | FDF10_MtoA_FDR_R        | CGACCACGAACAGTAGCC GCAACAGACAGAGTAGACAGAG                |
|                         | FDR10 MtoA FDF F        | GGTCGTTCTGGTGCAGCGGCATCTACTCTGTCTACTCTG                  |
| pBS-FDR10-Mt0A-FDF-YFP  | FDR10_MtoA_FDF_R        | CAGAGTAGACAGAGTAGATGCC GCTGCACCAGAACGACC                 |
| pET-SSF-YFP             | SSF_Ndel_F              | GGTGGTCATATGGCTTCTATGATTTCTTCTTCTGC                      |
| pET-SSR-YFP             | SSR_Ndel_F              | GGTGGTCATATGTGTAAGGTACGTGGCGGTAACAGC                     |
| pET-FDF-YFP             | FDF Ndel F              | GGTGGTCATATGGCATCTACTCTGTCTACTCTGTCTG                    |
| pET-FDR-YFP             | FDR Ndel F              | GGTGGTCATATGGCTACTGTTCGTGGTCGTTCTGG                      |
| pET-NtSSF-YFP           | NtSSF Ndel F            | GGTAGATACATATGGCTTCCTCAGTTC                              |
| All of pET constructs   | M13 Reverse             | TCACACAGGAAACAGCTATGAC                                   |

<sup>a.</sup> The restriction sites are underlined.