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Samples for Whole-genome Sequencing, Quality Control, and 

Identification of Variants 

 Prior to sample collection, informed consent was obtained from all research 

participants, and permits were received from the Ministry of Health and National 

Committee of Ethics in Cameroon and from COSTECH and NIMR in Dar es Salaam, 

Tanzania. In addition, appropriate IRB approval was obtained from both the 

University of Maryland and the University of Pennsylvania. Although the term 

„Pygmy‟ has historically been pejorative, it has recently been used by indigenous 

groups themselves as well as activist groups working on their behalf (Ballard, 2006; 

Leonhardt, 2006; Pelican, 2009). Acknowledging this recent trend and the absence 

of a better term that encompasses the hunting and gathering peoples from 

Cameroon, we use the word „Pygmy‟ to collectively refer to Baka, Bakola, and 

Bedzan individuals in our study. Hadza samples were collected at sites near Lake 

Eyasi in the Arusha region and Sandawe samples were collected in the Kondoa 

district in the Dodoma region of Tanzania. Individuals were chosen to be unrelated 

based on microsatellite (Tishkoff et al., 2009) and genome-wide SNP (Jarvis et al., 

2012) data analyses, including a pi-hat filter of 0.25 using PLINK (Purcell et al., 

2007). However, we note that the small population size of the Hadza means that 

token amounts of relatedness are shared between samples. White blood cells were 

isolated in the field from whole blood with a salting out procedure modified from 

(Miller et al., 1988) and DNA was extracted in the lab with a Purgene™ DNA 

extraction kit (Gentra Systems Inc., Minneapolis, MN). Because DNA was obtained 

from whole blood, we avoid possible artifacts that can arise from use of cell lines 
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(Maitra et al., 2005).  

 Hunter-gatherer genomes were sequenced at >60x coverage (Table 1) using 

the combinatorial probe-anchor ligation and DNA nanoarray technology of Complete 

Genomics. The standard Complete Genomics bioinformatics pipeline (Assembly 

Pipeline version 1.10 and CGA Tools 1.4) was used for sequence alignment, read 

mapping, assembly, and data analysis. This pipeline uses stringent criteria to make 

variant calls (likelihood ratios >100:1 are required to make homozygous variant calls 

and likelihood ratios >10,000:1 are required to make heterozygous variant calls), and 

published error rates are less than 1/100,000bp (Drmanac et al., 2010). Importantly, 

calls for different individuals were independent (otherwise, our allele frequency 

distributions would underestimate rare alleles). To assess genotyping accuracy we 

sequenced two additional genomes as technical replicates (each technical replicate 

was a duplicate of one of the five sequenced Hadza genomes). Data from our 

technical replicates revealed low error rates: 26,415 and 28,292 discordant variant 

calls are found for each pair of technical replicates.  

 As an additional test of genotyping accuracy we compared calls from whole-

genome sequencing and the Illumina1M-duo BeadChip array (of which we had data 

for 14 of 15 hunter-gatherers). Ignoring A/G and C/T sites (to avoid strand flipping 

issues in our Illumina1M-duo dataset), calls at total of 743,516 SNPs were 

compared. For each individual, concordance between platforms was very high 

(mean=0.999564, range=0.999463 to 0.999635). In practice, only one out of every 

2294 variant calls differed between platforms. Median coverage was similar for 

concordant (48x) and discordant (49x) SNPs, suggesting that errors were not due to 
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poor coverage during whole-genome sequencing. Furthermore, a total of 152 SNPs 

were classified as highly-discordant (>50%) between genotyping technologies, and 

32/152 highly-discordant SNPs were found to be tri-allelic after cross-referencing 

with dbSNP.  

 Prior to quality control filters, we observed 15,748,468 variants in hunter-

gatherer genomes. We then filtered our data based on “missingness” and departure 

from Hardy- Weinberg filters. Some genomic regions (such as centromeres and 

telomeres) are less likely to be successfully sequenced, and we find that sites called 

successfully in only a subset of individuals are more likely to be discordant (Figure 

S1). Because of this, we used a “missingness” filter, whereby sites called in <80% of 

all individuals were excluded from analysis, eliminating 2,311,725 variants (Figure 

S1). Because genotyping error can yield abnormal proportions of heterozygotes and 

homozygotes, we also used quality control filter to detect departures from Hardy-

Weinberg proportions. We note that even sites under strong selection are expected 

to pass a departure from Hardy-Weinberg proportion filter (Lachance, 2009a). To 

avoid artifacts due to population stratification (such as Wahlund effects) we summed 

Chi-square statistics for each hunter-gatherer population and excluded all sites with 

Chi-square values 13. In practice this involved excluding sites where every 

individual was heterozygous, and this quality control filter eliminated a further 16,425 

variants (Figure S1). We then merged data from pairs of genomes that contained 

technical replicates. This involved resolving discordant calls, and eliminating an 

additional 12,801 variants. After all quality control filters, a total of 13,407,517 

variants remained. 
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We note the following additional details: Genomic coordinates used in this 

paper refer to build37/hg19 of the human genome. For population genetics analyses 

(including calculation of , allele frequencies, and FST) we treated partially called 

sites as missing data. We note that the following analyses were restricted to SNPs 

(as opposed to SNPs and indels): PCA, NJ tree, Neutrality Index calculations, TMRCA 

scans, archaic introgression, and LSBL scans. In a previous study (Lam et al., 

2012), the sequencing technology of Complete Genomics was found to be highly 

accurate in detecting indels (22 of 23 successfully amplified indels were validated). 

However, Lam et al. also note that indel detection by Complete Genomics lacks 

sensitivity, indicating that the number of indels discovered in hunter-gatherer 

genomes may be an underestimate. 

 

 

Variants in Different Global Populations and Genomic Locations 

As additional genomes are sequenced there are diminishing returns in the 

number of observed variants. To quantify how these diminishing returns vary by 

population we analyzed up to five genomes per population. In addition to hunter-

gatherer genomes sequenced in this study, we included YRI (NA18501, NA18502, 

NA18504, NA18505, NA18508), CEU (NA06985, NA06994, NA07357, NA10851, 

NA12004), and ASN (NA18526, NA18537, NA18555, NA18940, NA18942) genomes 

from the Complete Genomics public data release. There are 

   

5!

(5 - k)!k!
 ways to select 

k different genomes from a set of five genomes, and for each value of k we 

calculated the number of variants for every possible combination of genomes. Mean 
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values of the number of variants observed per k genomes are plotted in Figure S2A 

(with variants absent from dbSNP131 labeled as novel). Because some data points 

involve single genomes, “missingness” and departure from Hardy-Weinberg filters 

were not used for Figure 2A-B. Data from multiple genomes can be fit to a power law 

distribution, and this distribution can in turn be used to predict the number of variants 

that will be observed as additional genomes are sequenced.  

      (S1) 

where  and  are scaling parameters, and vk is the total number of variants 

observed in k diploid genomes. Rearranging terms in Equation S1 allows us to find 

the number of diploid genomes that need to be sequenced in order to observe a 

particular number of variants. 

       (S2) 

Least squares fitting of observed data yields parameter estimates (Figure S2). Note 

that the number of novel variants observed is not a linear function of the number of 

sequenced genomes ( < 1). We note that different patterns can arise when the 

number of variants per sequenced genome does not follow a power law distribution 

(Gravel et al., 2011). 

Among hunter-gatherer populations analyzed in this paper, Pygmies contain 

the most genetic variation, followed by the Sandawe and the Hadza. After controlling 

for sample size, we find that Pygmy and Yoruba genomes have comparable 

amounts of variation, and that Hadza and Sandawe genomes contains more variants 

than non-African (Northern European, Chinese, and Japanese) genomes but fewer 

variants than West African (Pygmy and Yoruba) genomes (Figure S2).  
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 We also calculated the number of autosomal variants per non-overlapping 

1Mb window for each hunter-gatherer population. Variant density varies across the 

genome for many reasons, including local differences in mutation rate, selective 

sweeps, and repetitive sequences (as multiple copies can map to the same region of 

the reference genome). Distributions of the number of variants per Mb are similar for 

each population (Figure S2), and numbers of variants per window are highly 

correlated between populations (Figure S2). This observation indicates that 

differences in the number of variants found in each population (Pygmy > Sandawe > 

Hadza) reflect a broad genome-wide pattern. Spikes in Figure S2 correspond to the 

MHC region on chromosome 6, a region near the CSMD1 gene on chromosome 8 

that is known to contain CNVs (Shaikh et al., 2009), and multiple regions on 

chromosome 16. Although the number of variants per Mb varies across the genome, 

we find that genomic regions that contain a large number of variants in one 

population also contain a large number of variants in other populations (Figure S2). 

This trend is most pronounced over large spatial scales (sliding-window 

comparisons of the number of variants found in multiple populations yield R2 > 0.83 

for 1Mb windows, as opposed to R2 < 0.59 for 10kb windows).  

  

 

Y Chromosome and mtDNA Lineages 

Y chromosome and mtDNA give additional insight into the demographic 

history of paternal and maternal lineages (Table S2). All three Pygmy, Hadza, and 

Sandawe hunter-gatherer populations contain Y chromosome haplogroups that are 
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common among other hunter-gatherer populations in East, Central and Southern 

Africa (B2b and B2b*) and a lineage that is a signature of the Bantu expansion 

(E1b1a1) (Berniell-Lee et al., 2009). In addition, the Sandawe contain a Y 

chromosome haplogroup lineage associated with the expansion of Afro-Asiatic 

speakers (E1b1b1). All five Pygmies sequenced in this paper contain a mtDNA 

lineage that is common among Central African Pygmies (L1c1a).  

 

 

Runs of Homozygosity 

 One notable feature of genomes is that they can contain large runs of 

homozygosity (ROH). Possible causes of runs of homozygosity include inbreeding, 

selective sweeps, reduced mutation rates, and population bottlenecks. We 

calculated the number of runs of homozygosity and the cumulative size (in base 

pairs) of runs of homozygosity for each hunter-gatherer genome.  

 One complication is that some genomic regions are poorly sequenced, 

particularly centromeres. To ensure that poorly sequenced regions were not 

incorrectly labeled as runs of homozygosity, we required that at least one successful 

call be made per 10kb. Edges of poorly sequenced regions were treated as 

endpoints of runs of homozygosity. Another possible complication is genotyping 

error. This is because false heterozygotes can interrupt runs of homozygosity. To 

accommodate genotyping error we allowed for one false heterozygote per 50kb. We 

then identified all runs of heterozygosity above 100kb and 1Mb in size. We also 
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calculated the cumulative number of base pairs contained within runs of 

homozygosity (cROH) for each size threshold. 

 Each hunter-gatherer genome contained many runs of homozygosity, with 

>1% of each genome belonging to large runs of homozygosity (Figure S5). These 

findings are consistent with previous studies of global populations using SNP data 

(Hunter-Zinck et al., 2010; Kirin et al., 2010; Nothnagel et al., 2010). Estimates of 

cROH in African hunter-gatherers from whole-genome sequencing (this paper) are 

similar to estimates from SNP arrays (Henn et al., 2011). We observe more runs of 

homozygosity and larger cROH in Hadza genomes compared to Pygmy and 

Sandawe genomes (Figure S5). This pattern arises regardless of whether ROH are 

required to be >100kb or >1Mb. A previous study used a theoretical model to 

suggest that the cause of large ROH in the Hadza was due to a severe population 

bottleneck (Henn et al., 2011). An additional explanation for the observed patterns is 

inbreeding among the Hadza. Recent common ancestry among an individual‟s 

parents (inbreeding) can occur often in small populations (Lachance, 2009b), and 

inbreeding does not have to involve sibling or first cousin mating to result in Mb-

sized genomic regions that are identical by descent (Chapman and Thompson, 

2003). We note that there is high variance in cROH observed in Hadza genomes 

(Figure S5), and that three Hadza individuals contain many large ROH, a pattern 

that is consistent with inbreeding (Pemberton et al., 2012). In addition, a previous 

study using genealogical data found evidence of inbreeding in 163 of 931 Hadza 

individuals (Stevens et al., 1977). Note that population bottlenecks and inbreeding 
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can both contribute to observed patterns; they are not mutually exclusive (all five 

Hadza individuals have greater cROH than Pygmy or Sandawe individuals).  

 

 

Principal Components Analysis (PCA) and Construction of a 

Neighbor Joining Tree 

Principal component analysis was run on a set of 68 high-coverage genomes 

sequenced using the same technology. These genomes included the 15 Pygmy, 

Hadza, and Sandawe hunter-gatherers and 43 unrelated individuals from the 

Complete Genomics public data release 

(http://www.completegenomics.com/sequence-data/download-data/). We only used 

three of the four publicly available Maasai genomes because there is evidence that 

two are related, picking NA21732 instead of NA21737. Analyzed SNPs were 

autosomal, fully called in all 68 individuals, and not in LD. The prcomp() command in 

R was used to generate PCA plots from 50,000 randomly chosen genomic SNPs 

(Figure S4).  

To complement PCA analyses and infer evolutionary history of African hunter-

gatherers and other global populations we generated a neighbor joining tree using 

PHYLIP (Felsenstein, 2005). Analyses were run using 1,260,982 autosomal SNPs 

obtained from whole-genome sequencing (i.e. SNPs free of ascertainment bias). 

The chimpanzee genome was used as an outgroup and 61 individuals were chosen 

for the neighbor joining tree (Table S1, PUR and MXL individuals were excluded due 

to complex patterns of admixture). In the cladogram shown in Figure 1F, Pygmies 
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are basal (but not monophyletic) to other African and non-African populations 

sequenced by Complete Genomics. Furthermore, we find that Hadza and Sandawe 

populations cluster together. Non-African populations are embedded within the part 

of the tree that contains populations from East Africa (MKK, Maasai from Kenya). 

We caution that although the neighbor joining tree in Figure 1F is a useful way to 

show the hierarchal clustering of genomic data, a tree structure cannot fully describe 

complex evolutionary histories (because of gene flow). Bootstrap values were 

generated from 1000 replicates, and we found 90.8% support for the split between 

Pygmies and other sequenced populations, 100% support for the split between 

Hadza/Sandawe populations and Maasai/non-African populations, and 61.9% 

support for the split between Hadza and Sandawe populations.  

 

 

Structural Variation 

Structural variants (SVs) were called with Complete Genomics' standard 

pipeline. To identify overlapping SVs, junctions in the highConfidenceJunctionsBeta 

files were compared using the junctiondiff function in Complete Genomics' CGA 

Tools. A binary matrix was generated for the hunter-gatherer genomes sequenced in 

this study (15 unique genomes plus 2 technical replicates) and 48 genomes present 

in the Complete Genomics diversity panel. In this matrix, 1 indicates the presence of 

a SV junction, and 0 indicates the absence of a SV junction. A neighbor-joining tree 

was generated from the matrix. 
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Clustering patterns based on structural variants (translocations, inversions, 

etc.) are more complex than patterns based on SNPs: individuals in the same 

hunter-gatherer population do not cluster together with respect to structural variation. 

The complexity of these patterns may be due to the difficulty in identifying structural 

variants from short read sequencing technologies (Alkan et al., 2011). Indeed, 

technical replicates do not cluster together with respect to SV, suggesting that 

technological improvements will be needed to successfully identify population-level 

patterns of SV (including improved bioinformatics and sequencing of longer reads). 

 

 

Comparisons with a South African San genome (KB1) 

 In a previous study the whole-genome of a San hunter-gatherer from South 

Africa (KB1) was sequenced using Roche/454 and Illumina technologies (Schuster 

et al., 2010). After converting coordinates from hg18 (GRCh36) to hg19 (GRCh37), a 

list of positions where KB1 differs from the human reference genome was 

downloaded from the GALAXY server (http://main.g2.bx.psu.edu/). We then looked 

for KB1 variants that were also present in the 15 hunter-gatherer genomes 

sequenced in our study. Of these shared variants, approximately half (51.76%) were 

found in all three hunter-gatherer populations analyzed in this paper. Note, however, 

that many variants shared between hunter-gatherer populations are also present in 

other global populations (i.e. populations with different subsistence patterns). 

  Shared ancestry and/or gene-flow between the San and other hunter-gatherer 

populations can also be estimated via the D-test. This test has been used to identify 
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ancient admixture between human populations and archaic populations, including 

Neanderthals and Denisovans (Durand et al., 2011; Green et al., 2010; Reich et al., 

2010). The D-test uses counts of shared derived alleles to infer relative levels of 

gene flow and/or common ancestry.  

     (S3) 

 

In Equation S3, dABBA is the number of shared derived alleles between P1 and P3, 

and dBABA is the number of shared derived alleles between P2 and P3 (P1, P2, and 

P3 are genomes from three different populations). A positive D-statistic occurs if 

there is greater gene flow between P1 and P3, and a negative D-statistic occurs if 

there is greater gene flow between P2 and P3. Because of the possibility of 

incomplete lineage sorting, we advise some caution in interpreting the results of D-

tests involving the San and other hunter-gatherers. Standard errors were calculated 

by a block jackknife procedure (Efron, 1981). As per (Green et al., 2010) we used 

100 genomic blocks to calculate standard errors and generate Z-scores. We have 

whole-genome sequences from five individuals per population, which allowed us to 

compute 25 D-tests per pair of hunter-gatherer populations. Mean values of tests for 

each population are listed in Table S3. Chimpanzee, orangutan, and rhesus 

macaque genomes were used as outgroups to infer derived allele states via 

maximum likelihood. There appears to be slightly more gene flow and/or closer 

ancestry between the San and Pygmy individuals than between San and Hadza or 

Sandawe individuals.  
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Derived Allele Frequency Distributions 

 We inferred derived and ancestral alleles at each polymorphic SNP using 

maximum likelihood. Chimpanzee, orangutan, and rhesus macaque genomes were 

used as outgroups. We used PHYLIP (Felsenstein, 2005) to infer ancestral states 

via maximum likelihood (settings: ti/tv ratio of 2 with base frequencies calculated 

from human sequence data). We considered two models, one that does not allow for 

incomplete lineage sorting (non-ILS) and one that allows for incomplete lineage 

sorting (ILS). The latter model involved considering multiple trees (all three possible 

topologies involving variant, reference, and chimpanzee alleles). However, ancestral 

states were inferred with higher confidence using the non-ILS model, as opposed to 

the ILS model. Because of this, we opted to use the non-ILS model in this paper. 

Only ancestral states that were identified with > 95% confidence were retained, and 

we required that each SNP be fully called in all 15 hunter-gatherers. Derived allele 

frequency distributions were qualitatively similar when ancestral and derived states 

were inferred via parsimony, as opposed to maximum likelihood (data not shown). 

After inferring derived states we were left with 10.4 million SNPs (many sites 

in the human genome lack calls in other primates). Variant allele frequencies were 

then polarized by identifying whether reference alleles are ancestral (in which case 

derived allele frequencies equal variant allele frequencies) or derived (in which case 

derived allele frequencies equal reference allele frequencies). Derived allele 

frequency distributions in Figure 2D only consider polymorphic sites (monomorphic 

derived or ancestral alleles in each population are ignored). Neutral expectations in 
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Figure 2D follow from population genetics theory. Assuming an infinite sites model 

and constant population size, the probability of observing a particular SNP is 

inversely proportional to the derived allele frequency at that SNP (Lachance, 2010; 

Sethupathy and Hannenhalli, 2008). x is the derived allele frequency and C is a 

normalizing constant in Equation S4. 

         (S4) 

Joint allele frequencies were obtained for pairs of hunter-gatherer populations 

and depicted in 2D histograms (Figure S6). In each panel of Figure S6 data are 

normalized (i.e. probabilities sum to one), and SNPs were required to be 

polymorphic in at least one population. Allele frequency distributions for ascertained 

SNPs were determined by using only SNPs that are found on the Illumina1M-Duo 

BeadChip. SNPs on the Illumina1M array are enriched for intermediate frequency 

alleles in multiple populations. Regardless of genotyping platform, the majority of 

SNPs contain low frequency derived alleles in both populations (Figure S6). 

However, many SNPs have high frequency derived alleles in both populations. This 

secondary peak is unexpected, and is best explained by mis-inference of ancestral 

states due to hyper-mutability of CpG sites (Hernandez et al., 2007) and/or by GC-

biased gene conversion (Duret and Galtier, 2009). Because of this, mean derived 

allele frequencies in Table 2 and Figure S3 use only non-CpG SNPs that are free 

from biased gene conversion (i.e. only A/T and C/G SNPs are considered). 

Comparisons between allele frequency distributions from whole-genome 

sequencing and the Illumina1M-Duo platform (Figure S6) reveal that the 

ascertainment bias of SNPs in genotyping arrays cause intermediate frequency 
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alleles to be over-represented (Figure S6), emphasizing the importance of using 

whole-genome sequence data to obtain accurate estimates of allele frequency 

spectra. 

 

 

Population Genetic Statistics for Different Functional Regions of 

Genomes   

 Annotations from the UCSC table browser (http://genome.ucsc.edu/cgi-

bin/hgTables) were used to label variants (track: RefSeq Genes). Variants were 

classified as intergenic, 10kb upstream, 5 UTR, exon, intron, 3 UTR, or 10kb 

downstream. Note that it is possible for variants to belong to multiple classifications 

(including alternatively spliced sites that can be labeled as exonic or intronic). For 

each type of variant we calculated a number of population genetics statistics (Table 

2). 

 Within-population genetic statistics for each type of variant include , mean 

derived allele frequency (DAF), and Tajima‟s D. Only autosomal variants that were 

fully called in all 15 individuals were considered. Watterson‟s  measures the 

proportion of polymorphic sites (Watterson, 1975), where:

 

 

 

   (S5)

  
In Equation S5, S is the number of segregating sites, T is the total number of base 

pairs belonging to a particular sequence class (e.g. the total number of base pairs 

found in exons), and n is the sample size (in terms of haploid genomes). T was 
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calculated by multiplying the total number of base pairs belonging to a particular 

sequence class by 0.953 (the average proportion of each hunter-gatherer genome 

that was successfully called). Using intergenic estimates of  (Table 2), mutation 

rates of 1.110-8 (Roach et al., 2010) and 2.510-8 (Nachman and Crowell, 2000), 

and the relationship  = 4Ne, we calculated the effective population size for each 

hunter-gatherer population.  

 FST measures the genetic distance between pairs of populations, and we 

calculated this statistic from allele frequency data. Only fully called autosomal 

variants were considered for FST calculations. Note that FST calculations only 

consider polymorphic sites. 

     (S6) 

In Equation S6 

  

Var(p) denotes to the variance in allele frequencies across 

populations and 

   

p denotes mean allele frequency. However, small sample size can 

lead to biases (overestimates) in FST. Because of this we used the following equation 

(Akey et al., 2002; Weir and Cockerham, 1984): 

      (S7) 

 

In Equation S7 MSP denotes the mean squared error between populations, MSG 

denotes the mean squared errors for loci within populations, and nc is the corrected 

sample size. This sample size correction can result in negative values of FST, and we 

replaced these negative values with zeroes. The majority of segregating sites have 
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low values of Tajima‟s D, and mean FST was highest for comparisons involving the 

Hadza. 

 

 

Neutrality Index 

We conducted McDonald- Kreitman-type analyses for African hunter-

gatherers using the chimpanzee (PanTro3) genome as an outgroup (Table S4). 

These tests compare relative levels of polymorphism and fixed differences between 

site classes (e.g. neutral intergenic sites, synonymous sites, non-synonymous sites, 

sites in DNase I footprint regions, and sites in transcription factor (TF) motifs). 

Neutral intergenic sites are defined here as intergenic sites that are at least 50kb 

apart from genes, have GERP++ (Davydov et al., 2010) scores < 1, and are not 

located in DNase I footprint regions or TF motif regions. The neutrality index (NI) 

was calculated as previously described (Rand and Kann, 1996), and NI significantly 

>1 signifies purifying selection. Only sites that were successfully called in hunter-

gatherer and chimpanzee genomes were considered.  

 

 

DNase I Footprints 

We observed 674,808 variants in DNase I footprints (Rosenbloom et al., 

2012), and 149,072 variants in cis-regulatory motifs located within footprints. We 

also observed 37,797 nonsynonymous and 35,747 are synonymous variants. Thus, 

the number of putatively functional regulatory variants in hunter-gatherer genomes is 
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an order of magnitude more than putatively functional coding variants, findings that 

are consistent with (Vernot et al., 2012).  

The 3p14.3 (HESX1 containing) Pygmy AIM cluster contains five AIMs that 

are in DNase I hyper-sensitive sites (DHS) (chr3:57230332, chr3:57230341, 

chr3:57263461, chr3:57295123, and chr3:57370649). Two of these AIMs are less 

than 2 kb upstream of HESX1 and one AIM is located between HESX1 and APPL1. 

DHS indicate nucleosome-free regions of DNA that are accessible to the 

endonuclease DNase I. Such regions are thought to be available for binding by 

regulatory proteins. In addition, the chr3:57263461 AIM SNP overlaps with a DNase 

I footprint and is found within the first intron of the APPL1 gene. A DNase I footprint 

is an experimentally predicted protein binding site within a region of otherwise 

exposed DNA. This footprint overlaps a computationally predicted binding site for the 

TAL1/GATA1 complex. 

 

 

Tajima’s D 

 Allele frequency distributions were used to calculate Tajima‟s D. Positive 

values of Tajima‟s D indicate that there is an excess of intermediate frequency 

alleles and negative values of Tajima‟s D indicate that there is an excess of very 

high or very low frequency alleles. Population expansions result in genome-wide 

decreases in Tajima‟s D and population bottlenecks result in genome-wide increases 

of Tajima‟s D. The effects of natural selection are expected to affect local regions of 

the genome, with balancing selection yielding higher values of Tajima‟s D and 
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purifying or positive selecting yielding lower values of Tajima‟s D. The equation for 

Tajima‟s D is given by: 

     (S8) 

 

where 

   

ˆ k  is the average pairwise difference between sequences and S is the number 

of  segregating sites. a1, e1, and e2 are described in (Tajima, 1989). 

To calculate  from allele frequency distributions we need to obtain the 

probability that each site is heterozygous. Given a sample of n alleles, nA of which 

are allele A and nB of which are allele B, the probability that randomly selected 

diploid individuals are heterozygotes is:
 
 

     (S9) 

 

Equation S9 reduces to 2pq for large values of n. At each polymorphic site ni is the 

number of variant alleles observed and n is the sample size (10 in our case, as only 

fully called autosomal sites were considered). Let Pi be the proportion of SNPs 

where ni variant alleles are observed. Assuming that a large number of sites are 

sequenced the average number of pairwise differences is: 

     (S10) 

 

Given a set of S polymorphic sites and the allele frequency distribution for these 

sites, the above equations allow Tajima‟s D to be calculated. 



Tajima' s D 
 ̂k  S /a1

e1S  e2S(S 1)



ˆ k 



P(het) 
2nA nB

n(n 1)



ˆ k  S Pi

i1

n1


2n i(1 n i)

n(n 1)
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Using non-overlapping 100kb sliding windows, we find that Pygmy and Sandawe 

populations have lower values of Tajima‟s D than the Hadza (p < 0.0001 using Z-

tests). We also find that genomic regions with low values of Tajima‟s D tend to have 

reduced heterozygosity, a pattern that is consistent with both background selection 

and recent selective sweeps. Although Tajima‟s D and heterozygosity per 100kb 

window were positively correlated, values of R2 were low for all three populations 

(Pygmies: R2= 0.103, Hadza: R2= 0.064, Sandawe: R2= 0.108). 

For each population, we list the 20 windows with the lowest values of Tajima‟s 

D and the 10 windows with the highest values of Tajima‟s D for each population 

(Table S5). Inspection of calls for each individual reveals that many of these outlier 

100kb windows contain what have been called “yin-yang” haplotypes, i.e. two 

haplotypes that differ at a large number of SNP positions (Curtis and Vine, 2010; 

Zhang et al., 2003). For example, nine copies of one haplotype and one copy of 

another divergent haplotype can result in many sites with a minor allele frequency of 

10% (which yields low values of Tajima‟s D). 

 

 

Signals of Purifying Selection in Hunter-gatherer and Other Global 

Populations 

 We tested whether genic signatures of purifying selection vary by subsistence 

pattern or geographic location by comparing allele frequency distributions, predicted 

phenotypic effects, and the proportion of nonsynonymous variants. Three groups of 

populations were considered: African hunter-gatherers (Pygmy, Hadza, and 
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Sandawe), African agriculturalists and pastoralists (YRI, LWK, MKK), and non-

African populations (CEU, CHB, and JPT). To control for sample size differences we 

analyzed four diploid genomes per population (the minimum number of genomes per 

population in the Complete Genomics public data release). Selection is expected to 

shift the derived allele frequency (DAF) distribution in genes relative to noncoding 

regions of the genome (with the exception of regulatory sequences). Using whole-

genome data, we calculated the mean frequency of derived alleles for every 

intergenic and exon SNP in each population. Only fully called autosomal sites were 

retained, and we accounted for CpG hyper-mutability and GC-based gene 

conversion by ignoring SNPs in CpG dinucleotides and only considering A/T or C/G 

SNPs. To control for demographic effects, such as population bottlenecks, we 

compared the ratio of mean DAF in exons to intergenic regions for each population. 

The effects of amino acid changes in each population were assessed by calculating 

the proportion of sites classified as “benign”, “possibly damaging”, and “probably 

damaging” by PolyPhen-2 (Adzhubei et al., 2010). For consistency with a previous 

study (Lohmueller et al., 2008), Polyphen-2 analysis was restricted to SNPs where 

variant alleles are derived alleles. In addition, Polyphen-2 analysis was restricted to 

missense SNPs present in dbSNP build131 (i.e. SNPs with PolyPhen-2 data in 

(Adzhubei et al., 2010)). For each population, we also obtained the number of 

nonsynonymous and synonymous variants per genome. We then calculated the ratio 

of nonsynonymous to synonymous variants. Under a null hypothesis of equal 

selective constraint in each population this ratio should not vary across populations. 

Tests of selection in our paper were similar to those of (Lohmueller et al., 2008) 
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which looked for differences between African-Americans and European-Americans. 

Although signals of selection are broadly similar for all nine populations (Figure S3), 

statistically significant differences still occur. To test whether signals of selection 

differ for different types of populations we used one-way ANOVA and Tukey‟s HSD 

tests. However, because we only have three replicates for each type of population, it 

is unknown whether assumptions of normality hold. Mean derived allele frequencies 

were not significantly different between groups of populations (p > 0.4, Tukey‟s 

HSD). However, we caution that small sample sizes limit our ability to detect rare 

derived alleles. Although Polyphen-2 data were broadly similar for each group of 

populations, we observed significantly higher proportions of “probably damaging 

alleles” in non-African populations (p < 0.01, Tukey‟s HSD). Similarly, the 

proportions of nonsynonymous SNPs were higher in non-African populations (p < 10-

4, Tukey‟s HSD).  

 

 

TMRCA Calculations 

We estimated the Time to Most Recent Common Ancestor (TMRCA) for a set of 

samples for 50kb sliding windows (20kb step) across all autosomes. We use the 

method of (Thomson et al., 2000), which computes the average TMRCA in nucleotide 

substitutions for a set of sequences. Using Equation 1 of (Hudson, 2007) we 

calculated the TMRCA for each 50kb window. This value was then converted to an 

estimate of TMRCA in years by computing the divergence between chimpanzee and 

human for this region (D), and setting the molecular clock to 12My/D (i.e. we 
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normalize by window-specific mutation rates assuming that humans and 

chimpanzees split 6Mya).  

Human/chimpanzee alignments were downloaded from the UCSC Genome 

Browser, and the more conservative syntenicNet alignments were used (reference 

versions GRCh37 and panTro2, 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/vsPanTro2/syntenicNet/). For 

each autosomal variant identified using whole-genome sequencing, ancestral and 

derived states were calculated using a maximum likelihood method. We used 

DNAmL (Felsenstein, 2005) to evaluate each site, using a single base alignment 

consisting of the human reference base, the alternative allele found in our dateset, 

chimpanzee, orangutan, and macaque bases. DNAmL can handle missing data, and 

missing bases were marked as such. To allow for the possibility of incomplete 

lineage sorting between chimpanzee and human, three trees were considered for 

each site, and the highest likelihood tree was selected. Only states with probability > 

0.95 were selected. If the ancestral state was unable to be inferred due to alignment 

difficulties or low probability, then the most parsimonious state was selected based 

on the 68 unrelated hunter-gatherer and Complete Genomics genomes (i.e. the 

minor allele was assumed to be the derived allele). 

 

 

Archaic Introgression 

 Only fully called autosomal sites were considered for introgression analyses. 

In addition, CpG sites and regions identified by RepeatMasker were removed from 
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all S*, TMRCA and STRUCTURE analyses (1.2Gb of sequenced retained after 

filtering). We identified CpG sites by analyzing the human reference genome (hg19), 

genomes sequenced by Complete Genomics (15 hunter-gatherer genomes and the 

public data release), and three additional primate genomes (chimpanzee, orangutan, 

or macaque). To additionally account for ancestral CpGs, we counted any position 

that is C or G in one genome, and adjacent to a G or C (respectively) in another 

genome. This CpG metric is less conservative than the metric used for placental 

mammals, but more conservative than the metric used for primates in (McVicker et 

al., 2009). 

 To test the effects of various demographic parameters on our method, we 

simulated archaic introgression into either European or African populations. As a 

starting point, we used demographic parameters from (Plagnol and Wall, 2006), 

which models Europeans and Yorubans. In addition, we also used the following 

base parameters: a fixed mutation rate of 1.110-8, a fixed recombination rate of 

110-8, 700kya split time between archaic and modern human populations, and 

25kya time of introgression. Simulations were then run for a range of parameter 

values (Figure S7A, varying a single parameter and keeping other parameters at the 

base value). 

S* was computed using a dynamic programming algorithm, with a running 

time of O(n•s2), where n is the number of individuals and s is the number of variants 

in a region. For each parameter set we simulated 50kb windows over a range of 

archaic-to-modern-human migration parameters (0-2.4%, corresponding to 0-4% 

introgressed sequence per individual). We then identified the top 0.5% of each 
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simulation, as ranked by S*. These are analogous to the 350 top candidate regions 

used for several of our introgression analyses. To show that these regions are likely 

to contain introgressed sequence, we determined the false discovery rate (FDR) for 

each parameter setting (Figure S7A). For introgression levels above 1%, the FDR 

for most parameters is close to zero. Higher FDR is seen for very low recombination 

rates, some hotspot models with heterogeneous recombination rates, and for a 

recent time of split with the archaic population. We also calculated the distribution of 

normalized S* for simulated datasets and populations with whole-genome sequence 

data. In simulated data, the extent of positive skew in the distribution of normalized 

S* was correlated with the extent of archaic introgression (Figure S7D, simulated 

data with heterogeneous recombination rate: 80% 0.210-8, 20% 4.210-8). We see 

a similar positive skew in each of the studied populations, and patterns were similar 

for each population (Figure S7E), consistent with broadly similar levels of archaic 

introgression. However, several demographic parameters can affect the distribution 

of S*. For this reason, we further investigated the characteristics of putatively 

introgressed regions. 

In addition to determining the false discovery rate (FDR) for top candidate 

regions, we compared top candidate regions for each population to the draft 

Neanderthal sequence. Due to the low coverage of the draft Neanderthal sequence 

(Green et al., 2010), we used a comparison method that is less sensitive to errors in 

the Neanderthal sequence than direct sequence comparison. Specifically, for each 

region we performed a 2x2 Chi-square test for enrichment of variants matching the 

Neanderthal sequence that are unique to the target population, in comparison with 
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variants that are not unique to the target population (i.e., present in the reference 

population). Variants are only considered if they are covered by at least two 

Neanderthal reads. Top candidate regions in non-African populations show a clear 

excess of regions with significant enrichment of Neanderthal variants (Figure 3B); 

top candidate regions from African populations do not show this enrichment (Figure 

3A), demonstrating that our top candidate regions are enriched for archaic 

introgression. 

To increase the chance that analyzed genomic regions include entire 

introgressed haplotypes, we identified a subset of the 350 top candidate regions in 

which all introgressed variants for a given 50kb region are found in a single 

individual. This restricted top-candidate dataset (usually about 50% of the top 350 

regions) was used for TMRCA and STRUCTURE analyses of introgressed regions. 

Note that the TMRCA values given in Figure 2A, Figure 2D, and Figure S7C are 

calculated on single individuals from this subset (to better estimate the time of 

divergence of the two haplotypes contained in a single individual), whereas TMRCA 

estimates in the TMRCA estimates section of the main text are calculated on entire 

populations. 

 To identify population substructure in putatively introgressed regions, we 

performed a model based clustering analysis using STRUCTURE (Pritchard et al., 

2000). Putatively introgressed regions should primarily consist of a single individual 

containing one introgressed haplotype and one modern human haplotype, with the 

remaining individuals in the population containing entirely modern human 

haplotypes. In this situation, the differences between archaic and modern sequence 
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should be more pronounced than the differences between Pygmy, Sandawe and 

Hadza. To test this hypothesis, we analyzed the top putative introgressed regions 

from each hunter-gatherer population, as well as a similar number of random 

sequences from each hunter-gatherer population using STRUCTURE (Pritchard et 

al., 2000). Because introgressed sequences are likely to be at low frequency, no 

single individual will contain more than a small amount of introgressed sequence, 

and STRUCTURE is not well suited to identifying subpopulations that have no 

extant, or representative, individuals. To combat this problem, we created a "virtual 

genome" for each hunter-gatherer population, where each region is composed of 

genotypes from a single individual identified as containing the putatively introgressed 

haplotype (Figure 2).  If a region is a candidate introgressed region in multiple 

populations, each of those populations‟ virtual genome contains the introgressed 

region.  If a region is not a candidate in a given population, the virtual genome for 

that region and population is set to missing data. These virtual genomes are 

expected to consist of roughly 50% archaic and 50% modern human haplotypes. 

 We then performed a STRUCTURE analysis using standard settings, with a 

burn-in of 100k and run length of 100k. To reduce run time and the affect of LD, we 

performed each analysis on a random 10% of the selected sites. For each 

parameter setting, we computed three runs each of K=1-4, and selected the highest 

log likelihood of the three runs for each K. For random regions (the negative control), 

K=3 and K=4 have the highest log-likelihood, but all settings of K produce results 

where each virtual genome is composed almost entirely of a single population, i.e. 

there is no evidence of a substantial archaic component in these regions. For the 
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350 top candidate regions, K = 2 has the highest log-likelihood. However, all settings 

of K produce results where each virtual genome is composed of a ~50/50 mixture of 

two populations, supporting the hypothesis that these regions are significantly 

enriched for introgressed archaic sequence. As noted above, rare introgressed 

haplotypes are expected to be heterozygous, fitting with the observed ~50/50 

mixture. 

Simulations suggest that the relative time of split between archaic and 

modern human populations can be recovered via a TMRCA analysis. Specifically, we 

varied the time of split from 300kya to 1000kya, simulated migration levels from 0.01 

to 0.024, and selected the top 50 regions (0.5%) from each simulation. Simulated 

archaic-modern human split time vs. recovered TMRCA is given in Figure 3C. Empty 

boxes show simulated introgression events involving Europeans and grey boxes 

show simulated introgression events involving Yorubans. 

 To test whether putatively introgressed sequences are enriched in coding 

regions, we compared the distribution of top candidate regions for each population 

with the distribution of coding sequences, using the hypergeometric distribution. To 

minimize the effects of overlapping windows, we used every third 50kb window. 

Gene definitions were obtained from the UCSC Table Browser, RefSeq Genes track, 

refFlat table. Exons were extended by 2 bp, and overlapping exons were merged 

using BEDOPS (Neph et al., 2012). Top candidate regions were not enriched for 

coding sequence compared to the rest of the genome (p > 0.05). Rather, for multiple 

populations we found that top candidate regions were significantly depleted for 

coding sequence (p < 0.01 for Hadza, Yoruban, CEPH, and Tuscani; p < 0.05 for 
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Massai, Luhya, Chinese and Japanese). Top candidate regions in Pygmy, Sandawe 

and Gujarati populations were neither significantly enriched nor depleted for coding 

sequence, although in all three populations there were fewer overlaps between top 

candidate regions and coding sequence than expected by chance. 

 To determine if putatively introgressed sequences are clustered in the 

genome, we performed permutation tests to obtain the distribution of the expected 

number of 50kb introgressed windows within a 2Mb region. To minimize the effects 

of overlapping windows, we used every third 50kb window. Although the actual and 

expected distributions for each hunter-gatherer population are not significantly 

different (Wilcoxon rank-sum test, p > 0.05), we did see a few regions in each 

population with more top candidates than expected. In all three hunter gatherer 

populations, the region with the most top candidates is at chr8:3Mb-5Mb. This could 

be due to shared ancestral introgression, an increased proclivity for introgression 

involving this region, or enrichment of false positives due to an excess of CNVs in 

that region (Shaikh et al, 2009), which could lead to sequencing errors. However, 

several regions in this window from each non-African population are significantly 

enriched for Neanderthal variants. These enrichments are unlikely to be due to 

errors in the Neanderthal sequence caused by the complex structure of this window, 

as none of the hunter-gatherer regions in this window are enriched for Neanderthal 

variants. 

 Overlap between putatively introgressed regions was found for each pair of 

hunter-gatherer populations, and TMRCA was estimated for introgressed regions 

found in a single population or shared between two populations (FigureS7). We also 
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examined whether putatively introgressed regions are found in regions of high or low 

recombination (Figure S7B). While there is a slight shift towards lower recombination 

rates for top candidate regions, the distributions overlap to a large extent, suggesting 

that low recombination rates are not a major feature of top candidate regions 

(recombination rates from (Kong et al., 2002)). 

 

 

Genomic Regions Enriched for LSBL Outliers 

 We used locus-specific branch lengths (LSBL) to identify 100kb windows that 

are highly divergent between African hunter-gatherers and populations with 

agricultural or pastoral subsistence patterns. Locus-specific branch lengths at each 

polymorphic site were calculated using genetic distances between pairs of 

populations (FST): 

 

 (S11) 

 

  (S12) 

 

 (S13) 

 

Locus-specific branch lengths are largest when hunter-gatherer populations 

have allele frequencies that are very different from agricultural and pastoral 
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populations. The reason that LSBL were calculated instead of simply using FST, is 

that high values of FST do not indicate which of the two populations has diverged the 

most. To identify which population is divergent it is necessary to triangulate using a 

third population (Shriver et al., 2004). African population trios involved one hunter-

gather population (Pygmy, Hadza, or Sandawe), one agricultural population (YRI), 

and one pastoral population (MKK). Yoruba and Maasai sequence data come from 

the public data release from Complete Genomics. Only polymorphic autosomal sites 

were considered. We also required that sites be fully called in all populations. It is 

possible for an allele to be present in one population and absent in two populations. 

This causes complications with respect to Equations S11-S13, as FST is undefined if 

a site is monomorphic in a pair of populations. Because of this, pairwise genetic 

distances were set equal to zero if an allele was absent from a pair of population.  

Data from single sites is noisy when sample sizes are small. Because of this, 

we divided the genome into 100kb windows and looked for regions that contain 

many sites with large LSBL. Over 26,798 of these windows contain at least one 

polymorphism. Sites were classified as LSBL outliers if their locus-specific branch 

lengths were among the top 1% for each population. LSBL outlier cutoffs in each 

population were: 0.261 (Pygmy), 0.373 (Hadza), and 0.256 (Sandawe). For each 

genomic 100kb window we calculated how many variants were observed and how 

many of these variants were LSBL outliers. Many 100kb windows do not contain any 

outliers and some windows contain >100 outliers. Statistical tests (Chi-square and Z-

tests) were used to identify 100kb windows that were most enriched for LSBL 

outliers. However, the distribution of LSBL variants per 100kb window doesn‟t follow 
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any known distribution. After ranking windows by Chi-square scores, we list the top 

25 divergent windows for each population in Table S5. Subsequent pathway 

analyses focused on the top 1% (268) autosomal 100kb windows. In addition, Table 

S5 contains curated lists of functionally interesting genes in the top windows for 

each population. 

 

 

Clusters of Ancestry Informative Markers (AIMs) 

 Variant alleles were flagged as ancestry informative markers (AIMs) if they 

were absent from dbSNP 131, found in a single hunter-gatherer sample of 10 

genomes, and had a frequency >50%. Only autosomal alleles were considered and 

we required that each site be fully called in all 15 hunter-gatherers. 

Ancestry informative markers appear to cluster in genomes. We further 

examined this pattern by defining a cluster as a set of at least 10 AIMs, each of 

which is within 25kb of another AIM. Multiple clusters were observed in each 

population: 25 Pygmy AIM clusters (including 383 of 1,283 Pygmy AIMs), 281 Hadza 

AIM clusters (including 6,977 of 12,546 Hadza AIMs), and 5 Sandawe AIM clusters 

(including 53 of 173 Sandawe AIMs). We used Monte Carlo computer simulations to 

test whether this clustering was greater than expected by chance. Each simulation 

run involved taking the observed number of high frequency private alleles, randomly 

scattering them across the genome, and looking to see how many clusters were 

observed. Simulations were run 10,000 times for each population. In each case, p 

were <0.0001 (simulations always yielded fewer clusters than what was empirically 
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observed). Genes found in or near AIM clusters are listed for each population 

(Tables S5). 

 

 

Pathway Analyses 

Genes identified from outlier approaches (such as LSBL scans) may share 

biological and/or functional characteristics and we performed pathway analyses to 

identify these shared characteristics. However, pathway analysis results should be 

treated with some caution (Elbers et al., 2009; Jia et al., 2011; Wang et al., 2010). 

This is because we lack a full understanding of the underlying biology of many 

processes, and many genes do not have pathway annotations. In addition, because 

genomic scans of selection can identify genes that evolved due to different causes 

(e.g. selection for immune function or dietary adaptation), statistical power to detect 

individual pathways can be reduced. Pathway analysis requires a minimum number 

of genes to be effective (Elbers et al., 2009). This means that genome scans that 

only identify a small number of genes as outliers are unlikely to be enriched for 

biological pathways. Despite these caveats, pathway analysis offers a way to make 

sense out of long lists of outlier loci. 

In addition, there is evidence that regulatory variants are evolutionary 

important (Jeong et al., 2008; Wray, 2007) and long range regulation has been 

observed for eQTLs that are over 100kb distant from genes (Degner et al., 2012). 

Because of this, we opted to include 200kb windows flanking each side of highly-

divergent (LSBL) genomic regions for our pathway analyses.  
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Examining LSBL data, we analyzed the 268 (top 1%) most-divergent windows 

for each population using DAVID 6.7 (Huang da et al., 2009) at default settings 

(minimum number of genes per term=2, maximum EASE score=0.1). DAVID 

calculates statistical significance with a modified Fisher‟s Exact Test, generating an 

enrichment p (EASE score). Through DAVID it is possible to analyze KEGG and 

PANTHER databases (Huang da et al., 2009; Kanehisa et al., 2012; Thomas et al., 

2003).  

KEGG analyses of LSBL results show that both Pygmy-divergent and Hadza-

divergent regions are significantly enriched for genes involved in olfactory 

transduction (Table S6). Additional analyses point to various overrepresented 

metabolism pathways in Pygmy-divergent regions, and an overrepresented „taste 

transduction‟ pathway in Sandawe-divergent regions (Table S6). Furthermore, many 

immune related pathways were found to be overrepresented in Hadza-divergent and 

Sandawe-divergent regions. However, these signals were mainly driven by the HLA-

region at 6p21. This region encodes protein of classical HLA class I and II genes in 

the major histocompatibility complex (MHC) and is essential in immune recognition. 

This region is highly polymorphic and its LD extends across multiple HLA and non-

HLA genes. Genomic regions that contain functionally related genes can bias 

pathways analyses. Because of this, pathway analyses for Hadza and Sandawe 

populations were done including and excluding the HLA region (Table S6). In this 

study we defined the HLA region as chromosome 6: 20,000,00-40,000,000 

(GRCh37/hg19). PANTHER analyses of highly-divergent LSBL windows did not 
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reveal statistically significant enrichment after Benjamini-Hochberg corrections (p > 

0.05, Table S6). 

For pathway analysis of AIM data we identified all genes within 50kb of a 

population-specific AIM. Once again, DAVID 6.7 was used to test whether there was 

significant enrichment for genes in KEGG or PANTHER pathways (Table S6).  

We also tested whether genes identified by LSBL scans of Pygmy genomes 

are enriched for genes associated with height (as identified largely European 

GWAS). 318 Height-associated genes were found using the catalog of published 

genome-wide association studies (http://www.genome.gov/gwastudies/, access 

date: June 1, 2012), and a 2x2 Chi-square test of independence was used to 

determine statistical significance (assuming a total of 23,000 genes in the human 

genome). Considering only genes present in the top 268 Pygmy-divergent windows 

(the top 1%) we found 6/318 height-associated genes (p = 0.888). When the top 268 

Pygmy-divergent windows plus 200kb flanking regions were considered we found 

11/318 height-associated genes (p = 0.077).  

We also use a Chi-square test of independence to examine whether genes 

identified in LSBL scans of Pygmy genomes are enriched for genes associated with 

pituitary function (either genes involved in early pituitary development or genes 

expressed in the pituitary). For this analysis we included 22 genes listed in (Lee and 

Lavin, 2009) plus FSHR, LHCGR, TRH, GH2, and GHR. Considering only genes 

present in the top 268 Pygmy-divergent windows we found 3/27 genes involved in 

pituitary function (p < 0.0001). When the top 268 Pygmy-divergent windows plus 
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200kb flanking regions were considered we found 4/27 genes involved in pituitary 

function (p = 0.0082). 

 

 

Association Tests Between Pygmy AIMs and Height 

As the chr3:45Mb-60Mb region has previously been associated with Pygmy 

height (Jarvis et al., 2012) and the HESX1 and POU1F1 genes which play a role in 

pituitary development are plausible candidates to play a role in short height, we 

genotyped a larger sample of individuals at 15 Pygmy AIM SNPs encompassing AIM 

clusters at 3p21.13, 3p14.3 and 3p11.2 (Figure 4). Genotyped samples included 95 

Pygmy and Bantu samples analyzed in (Jarvis et al., 2012) and 10 Pygmy samples 

from the Coriell Institutute for Medical Research (five Biaka and five Mbuti samples, 

see Table S7).  

Samples were genotyped using TaqMan assays (Applied Biosystems), and 

two replicates of each assay were run. When data was missing in both replicates or 

calls were discordant between replicates we treated data as missing. Out of 1425 

(15*95) total genotyped SNPs, 61 had missing data (37 of which involved the 

centromeric SNP located at chr3:87681226). Allele frequencies of all 15 AIM SNPs 

are higher in Pygmy populations than neighboring Bantu populations, including 

10/15 SNPs which were absent from Bantu populations (Table S7). 

Height and ancestry data were also available for 94 of 95 genotyped 

individuals. Association between AIM SNPs and height was determined using 

EMMAX (Efficient Mixed-Model Associated eXpedited), a mixed-model linear 
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regression approach that corrects for both relatedness within populations and 

structure between them via a pair-wise matrix of genetic relationships among 

individuals (Kang et al., 2010). We treated ancestry as a covariate (using an identity 

by state matrix generated from Illumina1M-duo genotyping). Using the same set of 

individuals as our study, Jarvis et. al. showed that EMMAX is adequately able to 

account for population structure in Pygmy and Bantu populations (see Figure S7 of 

(Jarvis et al., 2012)). Dominance of alleles was assumed to be additive. Association 

between Pygmy AIM SNPs and height were calculated for males, females, and both 

sexes pooled together (sex as a covariate). We note that sample sizes are smaller 

for females (n=39) than males (n=55) and that statistical power to detect 

associations is a function of allele frequency (i.e. power is low for low frequency 

alleles). 

 

Additional Candidate Loci Related to Height and Pituitary Function 

In addition to the 3p14.3 (HESX1) and 3p11.2 (POU1F1) AIM clusters, we 

identified other interesting candidate loci that may play a role in short height and 

pituitary function in Pygmies. For example, one of the top Pygmy-LSBL hits 

(overlapping WBSCR27 and WBSCR28) and a Pygmy AIM cluster (overlapping 

MLXIPL) are found at 7q11.23, a region associated with Williams Syndrome. 

Although the Pygmy phenotype differs from that of Williams Syndrome, it is notable 

that individuals with Williams Syndrome have an abbreviated growth spurt at puberty 

(Partsch et al., 1999). Also, the largest Pygmy AIM cluster (3p14.3) contains APPL1 

which encodes a protein that directly interacts with the intracellular region of 
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adiponectin receptors (Deepa and Dong, 2009), and adiponectin is known to 

regulate pituitary function (Rodriguez-Pacheco et al., 2007). In addition, the fourth 

strongest Pygmy-LSBL hit overlaps the TRHR locus, consistent with a prior study of 

SNP variation (Jarvis et al., 2012). This locus codes for thyrotropin releasing 

hormone receptor, is expressed in the anterior pituitary and promotes the release of 

thyroid stimulating hormone from the anterior pituitary. Thyroid function plays a 

critical role in linear bone growth, sexual maturation, thermo-regulation, and immune 

function (Kamath et al., 2009). Prior studies indicate that Eastern (Dormitzer et al., 

1989) and Western Pygmies (personal communication, B. Hewlett and L. Cordes), 

who live in a low iodine environment but have low levels of Goiter compared to 

neighboring Bantu populations, may have a biological adaptation influencing thyroid 

function. Additionally, the FSHR locus is among the top 1% most divergent Pygmy 

100kb windows, as identified by LSBL outliers. FSHR encodes the follicle-stimulating 

hormone receptor, and is critical for gonad development. 
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Supplemental Tables 

 

Table S1. Individuals analyzed in PCA and/or neighbor joining tree, related to 

Figure 1 

Population 
Individuals analyzed 

in PCA 
Individuals in the 

NJ tree 

Pygmy (Cameroon) 5 5 

Hadza (Tanzania) 5 5 

Sandawe (Tanzania) 5 5 

YRI (Yoruba from Ibadan, Nigeria) 9 9 

LWK (Luhya from Webuya, Kenya) 4 4 

MKK (Maasai fom Kinyawa, Kenya) 3 3 

ASW (African-Americans from the Southwest USA) 5 5 

CEU (Northern and Western European ancestry from the CEPH collection) 9 9 

TSI (Toscans in Italy) 4 4 

CHB (Chinese from Beijing, China) 4 4 

JPT (Japanese from Tokyo, Japan) 4 4 

GIH (Gijurati Indians in Houston, USA) 4 4 

PUR (Puerto Rican from Puerto Rico) 2 0 

MXL (Mexican ancestry in Los Angeles, USA) 5 0 

 
 
 
 
Table S2. Y chromosome and mtDNA haplogroups, related to Figure 1 

Individual  Y chromosome haplogroup mtDNA haplogroup 

Pygmy 1 (Baka) B2b L1c1a1a1b1 

Pygmy 2 (Baka)  E1b1a1a1f L1c1a1a1a 

Pygmy 3 (Baka) B2b4 L1c1a1a1a 

Pygmy 4 (Bakola) E1b1a1a1f L1c1a1a1b1 

Pygmy 5 (Bedzan) E1b1a1a1g L1c1a2a1 

Hadza 1 E1b1a1a1f L2a1 

Hadza 2 B2b* L2a1 

Hadza 3 B2b* L4b2a2b1a 

Hadza 4 B2b* L3h1a2a2 

Hadza 5  B2b L4b2a2b1a 

Sandawe 1 E1b1a1a1g L3e1d 

Sandawe 2 E1b1b1 L2a1i 

Sandawe 3 E1b1b1f L0a2d1 

Sandawe 4 B2b* L0a3a 

Sandawe 5 B2b* L3x1a 
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Table S3. D-tests (shared derived alleles), related to Figure 1 
 

P1 P2 P3 
Shared derived 

(P1 and P3) 
Shared derived 

(P2 and P3) 
D 

Std. 
error 

Z-
score 

Pygmy Hadza San (KB1) 608925.4 593355.4 1.30% 0.44% 2.86 

Pygmy Sandawe San (KB1) 608925.4 592439 1.37% 0.32% 4.24 

Hadza Sandawe San (KB1) 593355.4 592439 0.08% 0.29% 0.27 

 
Table S3. Number of shared derived alleles, values of D, and standard errors are 

means from 25 tests. 

 

 

Table S4. Neutrality Index tests, related to Table 2. This table is available as a 

Microsoft Excel file (TableS4_NeutralityIndex.xlsx). It includes pooled and 

population-specific Neutrality Index calculations for hunter-gatherers.  

 

 

Table S5. Genome Scans, related to Figure 4. This table is available as a 

Microsoft Excel file (TableS5_GenomeScans.xlsx). It contains lists of highly-

divergent genomic regions (LSBL scans), AIM clusters, regions with high or low 

values of Tajima‟s D, and TMRCA outliers. 

 

 

Table S6. Pathway Analyses, related to Figure 4. This table is available as a 

Microsoft Excel file (TableS6_PathwayAnalyses.xlsx). It contains KEGG and 

PANTHER analyses of genes identified by LSBL scans (200kb flanking the top 1% 

most-divergent regions) and genes within 50kb of AIM SNPs. 



 48 

 

 

Table S7. AIM frequencies and height associations, related to Figure 5. This 

table is available as a Microsoft Excel file (TableS7_AIM_Frequency_Height.xlsx). It 

contains a list of SNP positions, allele frequency data for five Pygmy and two Bantu 

populations, and p-values for associations with height. 
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Supplemental figure legends 

 

Figure S1. Quality control, related to Table 1. A) Venn diagram showing the 

variants in dbSNP 131 (23.4M variants) and hunter-gatherer genomes (13.4M 

variants). All shapes are drawn to scale, and overlap between each of these two 

sets amounts to 7.9 million variants. Panel B) Fully called sites have lower error 

rates. Sites were binned according to whether they were fully called or called in a 

subset of 15 hunter-gatherer genomes. Discordance rates are for variant positions in 

technical replicates, and overestimate actual error rates. Panel C)  Most variant sites 

are fully called in all 15 hunter-gatherers. Panel D)  Summed Chi-square statistics 

from Pygmy, Hadza, and Sandawe populations (departure from Hardy-Weinberg 

proportions filter). 

 

Figure S2. Variants from whole-genome sequencing, related to Figure 1. A) 

Variants per sequenced genome for different populations. Non-hunter-gatherer 

populations analyzed are Yoruba (YRI), Asian (ASN, i.e. CHB and JPT), and 

European (CEU). “Novel” refers to variants absent from dbSNP131. B) Power-law 

parameters for the number of variants observed in each sequenced genome. Panels 

C, E, G, and I) Histograms showing the number of variants per Mb. Each histogram 

contains 150 bins. Panels D, F, H, and J) genomic distribution of variants per Mb.  

Panels C and D refer to the pooled set of all 15 hunter-gatherer genomes. 
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Figure S3. Signatures of purifying selection in geographically diverse 

populations with different subsistence patterns, related to Table 2. To control 

for sample size, four diploid genomes were analyzed for each population. Hunter-

gatherer (HG) populations are Pygmies, Hadza, and Sandawe. African 

agriculturalists and pastoralists (AP) are YRI, LWK, and MKK. Non-African 

agriculturalists (NA) are CEU, CHB, and JPT. A) Mean derived allele frequencies 

(DAF) for intergenic and exon SNPs. B) DAF in exon SNPs relative to intergenic 

SNPs. C) PolyPhen-2 data indicating the proportion of nonsynonymous variants 

classified as benign, possibly damaging, or probably damaging. D) Number of 

nonsynonymous variants per genome divided by the number of synonymous 

variants per genome. E) Statistical tests between groups of populations. ** indicates 

p < 0.01 and *** indicates p < 10-4.  

 

Figure S4. PCA plots, related to Figure 1. In each panel the x-axis corresponds to 

PC1. The proportion of the variance explained by each PC is indicated along each 

axis, and individuals are represented by population name. Pygmies are labeled 

green, Hadza are labeled blue, and Sandawe are labeled red. 

 

Figure S5. Runs of homozygosity (ROH), related to Table 2. In each panel cROH 

corresponds to the cumulative number of base pairs observed in runs of 

homozygosity. A run of homozygosity is defined as a 100kb region lacking 

heterozygote calls (Panel A) or a 1Mb region lacking heterozygote calls (Panel B). 

One genotyping error is tolerated per 50kb. Colors of points differ for Pygmies (red), 
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Hadza (blue), and Sandawe (red). Panel C) Statistics for runs of homozygosity. 

Population means  one standard deviation are listed. cROH refers to the 

cumulative number of base pairs found in runs of homozygosity (ROH). CV refers to 

the coefficient of variation (standard deviation / mean). 

 

Figure S6. Derived allele frequency distributions for hunter-gatherer 

populations, related to Table 2. A) Derived allele frequency (DAF) distributions for 

hunter-gatherer populations and null expectations from the neutral theory (infinite 

sites model with constant population size). B-D): Allele frequency distributions for 

pairs of populations using whole-genome sequencing data. E-G) Allele frequency 

distributions for pairs of populations using Illumina1M genotyping array data. In each 

panel, x- and y-axes correspond to the derived allele frequency in a particular 

population and the z-axis corresponds to the proportion of SNPs with a particular set 

of allele frequencies. 

 

Figure S7. S* statistics are robust at detecting introgression, related to Figures 

2 and 3. A) False Discovery Rate (FDR) for top 0.5% of simulated 50kb regions, 

ranked by S*, under several demographic parameters. Panel B) Recombination rate 

of top candidate regions (red dashed line), and of all regions, in three hunter 

gatherer populations. C) TMRCA estimates for shared and unique top candidate 

regions in Pygmy, Hadza and Sandawe. D) Tail of simulated S* distribution over 0-

3.8% introgressed sequence per individual. E) Tail of observed S* distribution for 11 

populations sequenced by Complete Genomics. 

 




