## Acetylphosphonate as a Surrogate of Acetate or Acetamide in Organocatalyzed Enantioselective Aldol Reactions

Jie Guang, Qunsheng Guo, and John Cong-Gui Zhao\*

Department of Chemistry, University of Texas at San Antonio

### **Supporting Information**

### **Table of Contents**

| General Information                 |
|-------------------------------------|
| Experimental ProceduresS-1          |
| Proposed Transition State ModelsS-3 |
| Proposed Reaction MechanismS-5      |
| Compound Characterization DataS-6   |
| Additional References S-13          |
| ORTEP Drawing of Compound 30S-14    |
| ORTEP Drawing of Compound 3rS-15    |
| Copy of NMR Spectra                 |
| Copy of HPLC Chromatograms S-38     |

#### **General information**

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. TLC was performed with silica gel GF<sub>254</sub> precoated on plastic plates and spots were visualized with UV. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a 300 MHz spectrometer (75 MHz for <sup>13</sup>C). The following abbreviations were used to designate chemical shift mutiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Melting points were recorded in open capillaries and uncorrected. Flash column chromatography was performed on silica gel. HPLC analysis was performed on an HPLC instrument equipped with a UV-Vis detector.

Solvents used in this study were freshly distilled from an appropriate drying agent before use. Dialkyl alkanoylphosphonates were prepared according to literature.<sup>24</sup> *N*-Methyl,<sup>25</sup> *N*-benzyl,<sup>26</sup> and *N*-trityl<sup>27</sup> protected isatin derivatives were prepared as described previously. Catalysts were synthesized by following the published procedures.<sup>18</sup>

#### **Experimental Procedures**

General Experimental Procedure for the Aldol Reaction of Isatins and Phenylglyoxal Hydrate: A solution of catalyst 4c or 4j (2.3 mg, 5.0 µmol, 5.0 mol %) and N-tritylisatin 2a (38.9 mg, 0.10 mmol) in THF (2.0 ml) were stirred at -15 °C for 15 min. Then diisopropyl acetylphosphonate 1c (104.1 mg, 0.50 mmol) was added in one portion to the above mixture. The reaction mixture was further stirred at the above temperature for 6 h (monitored by TLC). Upon the completion of the reaction, the reaction mixture was allowed to warm to room temperature and then methanol (1.0 mL) and DBU (15.2 mg, 0.10 mmol) were added sequentially. After stirring for an additional 15 min, the volatile components were removed under reduced pressure. residue was purified by column chromatography silica The on gel (EtOAc/hexane=1:2) to afford the desired aldol product.

# **Experimental Procedure for the Synthesis of the Acetamide Aldol Product 7** (Scheme 1)

A solution of catalyst **4j** (2.3 mg, 5.0  $\mu$ mol, 5.0 mol %) and *N*-tritylisatin **2a** (38.9 mg, 0.10 mmol) in THF (2.0 ml) were stirred at -15 °C for 15 min. Then diisopropyl acetylphosphonate **1c** (104.1 mg, 0.50 mmol) was added in one portion to the above mixture. The reaction mixture was further stirred at the above temperature for 6 h (monitored by TLC). Upon the completion of the reaction, the reaction mixture was allowed to warm to room temperature and then MeNH<sub>2</sub> solution in THF (2.0 M, 1.0 mL, 2.0 mmol) was added. After stirring for an additional 15 min, the volatile

components were removed under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane=1:2) to afford acetamide aldol product 7 (41.6 mg, 90%, 96% ee).

#### **Experimental Procedure for the Synthesis of Pyrrolidine-2,5-dione 9 (Scheme 1)**

A solution of catalyst **4j** (4.5 mg, 10.0  $\mu$ mol, 10.0 mol %) and ethyl 2-oxo-4-phenylbut-3-ynoate **8** (20.2 mg, 0.10 mmol) in THF (1.0 ml) were stirred at -15 °C for 15 min. Then diisopropyl acetylphosphonate **1c** (104.1 mg, 0.50 mmol) was added in one portion to the above mixture. The reaction mixture was further stirred at the above temperature for 24 h (monitored by TLC). Then the reaction mixture was allowed to warm to room temperature and MeNH<sub>2</sub> solution in THF (2.0 M, 1.0 mL, 2.0 mmol) was added. After stirring for an additional 15 min, the volatile components were removed under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane=1:2) to afford the desired aldol product **9** (17.4 mg, 76% yield, 76% ee).

# Removing the Trityl Protecting Group: Converting the Aldol Product 3d to Compound 3a<sup>22</sup> (Scheme 2)



Triethylsilane (64.0 µl, 0.4 mmol) and trifluoroacetic acid (1.0 mL) were added to a solution of **3d** (46.5 mg, 0.10 mmol; 95% ee) in CH<sub>2</sub>Cl<sub>2</sub> (3.0 mL), and the mixture was stirred for 2 h at room temperature. The reaction was quenched with saturated aq. NaHCO<sub>3</sub> (6 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (6 mL × 3 times). The organic layer was dried over MgSO<sub>4</sub>, filtered, and concentrated under vacuum. The residue was purified by silica gel preparative TLC (EtOAc/hexane = 1/1) to afford compound **3a** as a white solid (20.5 mg, 94% yield, 96% ee).

#### Synthesis of Half Fragment of Madindoline A and B (compound 11, Scheme 3)

A solution of (*R*)-methyl 2-(3-hydroxy-2-oxo-1-tritylindolin-3-yl)acetate (**3d**, 139.0 mg, 0.30 mmol, 95% ee) in THF (7.0 ml) was cooled to 0  $^{\circ}$ C. To the mixture was added LiAlH<sub>4</sub>-THF solution (1.0 M, 3.0 mL, 3.0 mmol) while stirring. The reation was further stirred for 1 h at 0  $^{\circ}$ C and then 3 h at room temperature. The reaction mixuter was quenched by adding water. The suspension so obtained was filtered through Celite. The Celite layer was washed with CH<sub>2</sub>Cl<sub>2</sub>. The solvent was evaporated and the crude product obtained was purified by flash column chromatography, eluting with 1:3 EtOAc/hexane, to give compound **10** as pale yellow solid (80.5 mg, 64%).



To a solution of **10** (80.5 mg, 0.19 mmol) in  $CH_2Cl_2$  (4.0 mL) at 0 °C were added triethylsilane (64.0 µl, 0.40 mmol) and trifluoroacetic acid (3.0 µl, 0.040 mmol) consecutively within 30 min. The reaction mixture was stirred for 3.5 h at 0 °C and then quenched with NaHCO<sub>3</sub> (42.0 mg, 0.50 mmol). The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography, eluting with 1:2 EtOAc/hexane, to give compound **11** as white solid (30.0 mg, 83%).

#### **Proposed Transition State Models**

The proposed transition state models for catalysts **4b** and **4j** are shown below in Scheme S-1 and Scheme S-2.



Scheme S-1: Proposed Transition State Models for Catalyst 4b

Based on these models, increasing the steric hindrance at 4-position will make the favored TS become less favored. This might be the reason why the stereoselectivity is reversed for 4-substituted isatins (Table 2 of the main text, entries 1-2).



Scheme S-2: Proposed Transition State Models for Catalyst 4j

These models can explain the formation of the (R,S)-diastereomer **3r** as the major product with this catalyst (Scheme 1, equation A of the main text).



Scheme S-3: Proposed Mechanism for the Quinidine Thiourea-Catalyzed Aldol Reaction and *in-situ* Conversion of the Aldol Product to an Acetate Derivative.

#### **Compound Characterization Data**

### (R)-Methyl 2-(3-hydroxy-2-oxoindolin-3-yl)acetate (3a)<sup>28</sup>

White solid, 94% yiled, m.p. 101-103 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$ 2.98 (s, 2H), 3.57 (s, 3H), 3.69 (s, 1H), 4.60 (br, 1H), 6.89 (d, J =7.8 Hz, 1H), 7.07(t, J = 7.5 Hz, 1H), 7.27(t, J = 9.0 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 8.40(s, 1H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  41.1, 52.4, 74.0, 110.7, 123.3, 124.3, 129.7, 130.3, 140.6, 171.0, 178.3;

 $v_{\text{max}}$ : 1045, 1174, 1205, 1356, 1441, 1468, 1619, 1711, 3379 cm<sup>-1</sup>.  $[\alpha]_D^{25} = +120.6$  (*c* 0.05, MeOH, 96% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using a ChiralCel OJ-H column (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer:  $t_R = 31.9$  min, minor enantiomer:  $t_R = 40.7$  min.

#### (R)-Methyl 2-(3-hydroxy-2-oxo-1-tritylindolin-3-yl)acetate (3d)



White solid; 90% yield; m.p. 172-174 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.91 (dd, J = 22.2, 15.3 Hz, 2H), 3.57 (s, 3H), 3.68 (s, 1H), 6.22 (d, J = 9 Hz, 1H), 6.81-6.89 (m, 2H), 7.11-7.26 (m, 10H), 7.36-7.39 (m, 6H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  42.2, 53.3, 73.4, 74.6, 116.4, 122.7, 123.2, 127.0, 127.7, 128.6, 129.3, 141.8, 143.2, 170.3, 177.7;

 $v_{\text{max}}$ : 1058, 1119, 1158, 1338, 1448, 1605, 1715, 3367 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -33.2$  (*c* 0.05, CH<sub>2</sub>Cl<sub>2</sub>, 95% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralCel OD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer:  $t_R = 10.7$  min, minor enantiomer:  $t_R = 14.4$  min. Anal. calcd. for C<sub>30</sub>H<sub>25</sub>NO<sub>4</sub>: C, 77.74; H, 5.44; N, 3.02. Found: C, 77.52; H, 5.38; N, 3.01.

#### (R)-Methyl 2-(4-chloro-3-hydroxy-2-oxo-1-tritylindolin-3-yl)acetate (3e)



White solid; 87% yield; m.p. 200-202 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  3.29-3.46 (m, 3H), 3.65 (s, 3H), 6.26 (d, J = 7.5 Hz, 1H), 6.82-6.91 (m, 2H), 7.18-7.29 (m, 9H), 7.45-7.47 (m, 6H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  40.3, 52.2, 74.2, 75.0, 115.0, 123.8, 125.4, 127.1, 127.8, 129.4, 129.5, 130.9, 141.5, 145.6, 169.8, 177.2;  $v_{max}$ : 1149, 1207,

1349, 1446, 1490, 1600, 1725 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -45.8$  (*c* 0.10, CH<sub>2</sub>Cl<sub>2</sub>, 96% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralCel OD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer:  $t_R = 9.2$  min, minor enantiomer:  $t_R = 11.1$  min. Anal. calcd. for  $C_{30}H_{24}ClNO_4$ : C, 72.36; H, 4.86; N, 2.81. Found: C, 71.94; H, 4.95; N, 2.79.

#### (R)-Methyl 2-(4-bromo-3-hydroxy-2-oxo-1-tritylindolin-3-yl)acetate (3f)



White solid; 92% yield; m.p. 147-149 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  3.32 (d, J = 15.0 Hz, 1H), 3.49 (d, J = 7.5 Hz, 1H), 3.65 (s, 3H), 6.31 (d, J = 8.1 Hz, 1H), 6.78 (t, J = 8.1 Hz, 1H), 7.06 (d, J = 8.1 Hz, 1H), 7.18-7.29 (m, 10H), 7.44-7.47 (m, 6H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  40.2, 52.2, 74.7, 75.0, 115.0, 118.7, 126.9, 127.1, 127.8,

129.4, 129.5, 129.7, 141.5, 145.8, 169.7, 177.2;  $v_{max}$ : 1139, 1206, 1259, 1443, 1490, 1582, 1728 cm<sup>-1</sup>. [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -47.4 (*c* 0.10, CH<sub>2</sub>Cl<sub>2</sub>, 97% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralCel OD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer: t<sub>R</sub> = 9.6 min, minor enantiomer: t<sub>R</sub> = 12.3 min. Anal. calcd. for C<sub>30</sub>H<sub>24</sub>BrNO<sub>4</sub>: C, 66.43; H, 4.46; N, 2.58. Found: C, 66.20; H, 4.58; N, 2.57.

#### (R)-Methyl 2-(3-hydroxy-5-methyl-2-oxo-1-tritylindolin-3-yl)acetate (3g)



White solid; 92% yield; m.p. 156-159 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>): 2.18 (s, 3H),  $\delta$  2.94 (dd, J = 24.3, 15.6 Hz, 2H), 3.62 (s, 3H), 3.67 (s, 1H), 6.13 (d, J = 8.4 Hz, 1H), 6.67 (d, J = 8.4 Hz, 1H), 7.10-7.22 (m, 10H), 7.40-7.42 (m, 6H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  21.0, 42.3, 52.2, 73.5, 74.5, 116.1, 123.9, 126.9,

127.7, 129.1, 129.3, 132.3, 140.8, 141.9, 170.2, 177.8;  $v_{max}$ : 1060, 1196, 1327, 1436, 1486, 1597, 1711, 3368 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -59.7$  (*c* 0.11, CH<sub>2</sub>Cl<sub>2</sub>, 94% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralCel OD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer: t<sub>R</sub> = 9.4 min, minor enantiomer: t<sub>R</sub> = 12.3 min. Anal. calcd. for C<sub>31</sub>H<sub>27</sub>NO<sub>4</sub>: C, 77.97; H, 5.70; N, 2.93. Found: C, 77.71; H, 5.70; N, 3.04.

#### (R)-Methyl 2-(3-hydroxy-5-methoxy-2-oxo-1-tritylindolin-3-yl)acetate (3h)



73.7, 74.5, 109.6, 113.7, 117.0, 127.0, 127.7, 129.3, 130.5, 136.3, 141.8, 155.6, 170.2, 177.6;  $v_{\text{max}}$ : 1029, 1160, 1273, 1315, 1433, 1486, 1599, 1716, 3060 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -53.1$  (*c* 0.10, CH<sub>2</sub>Cl<sub>2</sub>, 94% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralCel OD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer: t<sub>R</sub> = 12.6 min, minor enantiomer: t<sub>R</sub> = 16.6 min. Anal. calcd. for C<sub>31</sub>H<sub>27</sub>NO<sub>5</sub>: C, 75.44; H, 5.51; N, 2.84. Found: C, 75.19; H, 5.49; N, 2.86.

#### (R)-Methyl 2-(5-fluoro-3-hydroxy-2-oxo-1-tritylindolin-3-yl)acetate (3i)



White solid; 88% yield; m.p. 194-196 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.89 (dd, J = 18.0, 15.6 Hz, 2H), 3.59 (s, 3H), 3.67 (s, 1H), 6.15 (dd, J = 9.0, 4.2 Hz, 1H), 6.54 (td, J = 11.7, 8.7, 2.7 Hz, 1H), 6.98 (dd, J = 7.2, 2.7 Hz, 1H), 7.09-7.20 (m, 9H), 7.33-7.36 (m, 6H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  42.3, 52.5, 73.6,

74.9, 111.2, 111.5, 115.1, 115.4, 117.3, 117.4, 127.3, 128.0, 129.4, 131.0, 131.1, 139.2, 141.7, 157.3, 160.5, 170.2, 177.7;  $v_{\text{max}}$ : 1064, 1163, 1262, 1448, 1476, 1611, 1726, 3059 cm<sup>-1</sup>.  $[\alpha]_{\text{D}}^{25} = -35.8$  (*c* 0.11, CH<sub>2</sub>Cl<sub>2</sub>, 95% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralCel

OD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer:  $t_R = 9.4$  min, minor enantiomer:  $t_R = 13.8$  min. Anal. calcd. for  $C_{30}H_{24}FNO_4$ : C, 74.83; H, 5.02; N, 2.91. Found: C, 74.32; H, 5.55; N, 2.72.

#### (R)-Methyl 2-(5-chloro-3-hydroxy-2-oxo-1-tritylindolin-3-yl)acetate (3j)



White solid; 84% yield; m.p. 184-185 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  3.12 (dd, J = 21.6, 15.6 Hz, 2H), 3.78 (s, 3H), 6.35 (d, J = 8.7 Hz, 1H), 7.00 (d, J = 8.7 Hz, 1H), 7.31-7.42 (m, 10H), 7.54-7.56 (m, 6H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  40.3, 52.2, 74.2, 75.0, 115.0, 123.8, 125.4, 127.1, 127.8, 129.4, 129.5,

130.9, 141.5, 145.6, 169.8, 177.2;  $v_{\text{max}}$ : 1033, 1066, 1184, 1300, 1471, 1594, 1726, 3062, 3380 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -26.9$  (*c* 0.06, MeOH, 95% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralCel OD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer:  $t_R = 8.8$  min, minor enantiomer:  $t_R = 13.0$  min. Anal. calcd. for  $C_{30}H_{24}CINO_4$ : C, 72.36; H, 4.86; N, 2.81. Found: C, 72.37; H, 5.01; N, 2.78.

#### (*R*)-Methyl 2-(5-bromo-3-hydroxy-2-oxo-1-tritylindolin-3-yl)acetate (3k)



White solid; 89% yield; m.p. 201-203 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.99 (dd, J = 20.1, 15.6 Hz, 2H), 3.69 (s, 3H), 3.76 (s, 1H), 6.18 (d, J = 8.7 Hz, 1H), 7.01 (d, J = 8.7 Hz, 1H), 7.19-7.28 (m, 10H), 7.42-7.45 (m, 6H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  42.1, 52.4, 73.3, 74.8, 115.8, 117.8, 126.6, 127.2, 127.8,

129.2, 131.3, 131.5, 141.4, 142.4, 170.0, 177.2;  $v_{max}$ : 1035, 1076, 1182, 1266, 1300, 1444, 1471, 1606, 1719, 3386 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -35.8$  (*c* 0.10, CH<sub>2</sub>Cl<sub>2</sub>, 93% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralCel OD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer:  $t_R = 8.9$  min, minor enantiomer:  $t_R = 13.5$  min. Anal. calcd. for  $C_{30}H_{24}BrNO_4$ : C, 66.43; H, 4.43; N, 2.58. Found: C, 66.21; H, 4.62; N, 2.43.

#### (R)-Methyl 2-(3-hydroxy-5-iodo-2-oxo-1-tritylindolin-3-yl)acetate (3l)



White solid; 91% yield; m.p. 127-129 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.97 (dd, J = 21.6, 15.6 Hz, 2H), 3.68 (s, 3H), 3.74 (s, 1H), 6.06 (d, J = 8.7 Hz, 1H), 7.17-7.27 (m, 11H), 7.40-7.43 (m, 6H), 7.60 (s, 1H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  42.2, 52.5, 73.3, 74.9, 86.1, 118.4, 127.3, 128.0, 129.4, 131.7, 132.3, 137.6, 141.6,

143.4, 170.1, 177.2;  $v_{\text{max}}$ : 1032, 1071, 1129, 1182, 1263, 1313, 1470, 1602, 1718, 3386 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -65.4$  (*c* 0.10, MeOH, 94% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralCel OD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer:  $t_R = 8.2$  min, minor enantiomer:  $t_R = 12.4$  min. Anal. calcd. for  $C_{30}H_{24}INO_4$ : C, 61.13; H, 4.10; N, 2.38. Found: C, 61.26; H, 4.29; N, 2.33.

#### (R)-Methyl 2-(3-hydroxy-5-nitro-2-oxo-1-tritylindolin-3-yl)acetate (3m)



White solid; 88% yield; m.p. 228-229 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  3.00 (s, 2H), 3.60 (s, 4H), 3.74 (s, 1H), 6.35 (d, J = 9.0 Hz, 1H), 7.12-7.23 (m, 9H), 7.33-7.37 (m, 6H), 7.78 (dd, J = 9.0, 6.3 Hz, 1H), 8.11 (d, J = 9.0, 2.4 Hz, 1H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  41.8, 52.5, 72.8, 75.4, 115.0, 119.1, 125.1,

127.4, 128.0, 129.2, 130.2, 141.0, 143.1, 149.4, 169.8, 177.7;  $v_{max}$ : 1036, 1078, 1111, 1163, 1183, 1217, 1271, 1332, 1419, 1445, 1475, 1513, 1613, 1727, 3402 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -56.6$  (*c* 0.09, CH<sub>2</sub>Cl<sub>2</sub>, 84% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralCel OD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer:  $t_R = 12.8$  min, minor enantiomer:  $t_R = 20.2$  min. Anal. calcd. for  $C_{30}H_{24}N_2O_6$ : C, 70.86; H, 4.76; N, 5.51. Found: C, 70.61; H, 4.96; N, 5.55.

#### (R)-Methyl 2-(6-bromo-3-hydroxy-2-oxo-1-tritylindolin-3-yl)acetate (3n)



White solid; 92% yield; m.p. 220-223 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.97 (dd, J = 20.7, 15.3 Hz, 2H), 3.66 (s, 3H), 3.72 (s, 1H), 7.09 (d, J = 7.5 Hz, 2H), 7.20-7.30 (m, 10H), 7.42-7.44 (m, 7H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  42.0, 52.4, 73.0, 74.9, 119.4, 122.4, 124.5, 125.6, 127.2, 127.9, 128.2, 129.2,

144.3, 144.6, 170.0, 177.5;  $v_{max}$ : 1045, 1122, 1181, 1325, 1443, 1474, 1599, 1708, 3425 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -68.3$  (*c* 0.11, CH<sub>2</sub>Cl<sub>2</sub>, 93% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralPak AD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer:  $t_R = 12.0$  min, minor enantiomer:  $t_R = 16.0$  min. Anal. calcd. for C<sub>30</sub>H<sub>24</sub>BrNO<sub>4</sub>: C, 66.43; H, 4.46; N, 2.58. Found: C, 66.28; H, 4.56; N, 2.66.

#### (R)-Methyl 2-(1-benzyl-7-bromo-3-hydroxy-2-oxoindolin-3-yl)acetate (30)



White solid; 91% yield; m.p. 153-155 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.86 (dd, J = 26.4, 15.9 Hz, 2H), 3.56 (s, 3H), 4.37 (s, 1H), 5.23 (s, 2H), 6.80 (t, J = 7.8 Hz, 1H), 7.08-7.26 (m, 7H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  41.2, 44.8, 52.5, 72.8, 103.1, 123.1, 124.7, 126.3, 127.2, 128.6, 132.4, 136.1, 136.9, 140.3, 170.6, 177.1;  $\nu_{max}$ : 1006, 1070, 1133, 1169, 1202, 1337, 1435, 1582, 1608, 1706, 1730, 3309 cm<sup>-1</sup>.

 $[\alpha]_D^{25} = +28.3$  (*c* 0.11, CH<sub>2</sub>Cl<sub>2</sub>, 93% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralPak AD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer: t<sub>R</sub> = 23.4 min, minor enantiomer: t<sub>R</sub> = 31.8 min. Anal. calcd. for C<sub>18</sub>H<sub>16</sub>BrNO<sub>4</sub>: C, 55.40; H, 4.13; N, 3.59. Found: C, 55.42; H, 4.09; N, 3.60.

#### (R)-Methyl 2-(1-benzyl-5,7-dibromo-3-hydroxy-2-oxoindolin-3-yl)acetate (3p)

White solid; 90% yield; m.p. 121-123 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.91 (dd, J = 21.9, 16.2 Hz, 2H), 3.65 (s, 3H), 4.42 (s, 1H), 5.26 (s, 2H), 7.11-7.25 (m, 5H), 7.40 (d, J = 2.1 Hz, 1H), 7.48 (d, J = 1.8 Hz, 1H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  41.0, 44.9, 52.7, 72.8,



103.6, 116.4, 126.2, 126.5, 127.4, 128.7, 133.9, 136.6, 137.9, 139.6, 170.4, 176.6;  $v_{\text{max}}$ : 1020, 1075, 1146, 1177, 1338, 1449, 1572, 1601, 1706, 1744, 3359 cm<sup>-1</sup>.  $[\alpha]_{\text{D}}^{25} = +18.9$  (*c* 0.11, CH<sub>2</sub>Cl<sub>2</sub>, 93% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralPak AD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min),

major enantiomer:  $t_R = 16.2$  min, minor enantiomer:  $t_R = 21.5$  min. Anal. calcd. for  $C_{18}H_{15}Br_2NO_4$ : C, 46.08; H, 3.22; N, 2.83. Found: C, 46.21; H, 3.32; N, 2.83.

#### (R)-Methyl 2-(1-benzyl-3-hydroxy-5,7-dimethyl-2-oxoindolin-3-yl)acetate (3q)



White solid; 82% yield; m.p. 149-150 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.15 (d, J = 22.2 Hz), 2.90 (dd, J = 34.5, 15.6 Hz, 2H), 3.63 (s, 3H), 4.32 (s, 1H), 5.05 (s, 2H), 6.71 (s, 1H), 7.00 (s, 1H,) 7.08-7.24 (m, 5H);; <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  18.9, 21.0, 41.4, 45.3, 52.4, 73.0, 120.3, 122.5, 125.8, 127.3, 129.0, 130.0, 133.1, 134.6, 137.3, 138.2, 171.0, 177.4;  $v_{max}$ : 1046,

1161, 1205, 1318, 1358, 1438, 1485, 1604, 1670, 1736, 3271 cm<sup>-1</sup>.  $[\alpha]_D^{25} = +12.2$  (*c* 0.11, CH<sub>2</sub>Cl<sub>2</sub>, 94% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using ChiralPak AD-H (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer: t<sub>R</sub> = 21.8 min, minor enantiomer: t<sub>R</sub> = 31.3 min. Anal. calcd. for C<sub>20</sub>H<sub>21</sub>NO<sub>4</sub>: C, 70.78; H, 6.24; N, 4.13. Found: C, 70.64; H, 6.32; N, 4.26.

#### (S)-Methyl 2-[(R)-3-hydroxy-2-oxo-1-tritylindolin-3-yl]propanoate (3r)



m.p. 92-95 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.92 (d, J = 7.2 Hz, 3H), 2.96 (dd, J = 14.4, 7.2 Hz, 1H), 3.61 (s, 3H), 4.58 (s, 1H), 6.19 (d, J = 6.9 Hz, 1H), 6.80-6.84 (m, 2H,) 7.05-7.20 (m, 9H), 7.32-7.35 (m, 6H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  11.4, 45.9, 52.6, 74.7, 116.2,

Tr 122.4, 122.8, 123.4, 126.9, 127.7, 128.4, 128.9, 129.2, 141.9, 143.7, 173.7, 177.6;  $v_{max}$ : 1002, 1183, 1310, 1448, 1607, 1727, 2950 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -20.7$  (*c* 0.16, CH<sub>2</sub>Cl<sub>2</sub>, dr: 80:20, 94% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using a ChiralPak AD-H column (hexanes/*i*-PrOH 81:19 at 0.7 mL/min), major diastereomer:  $t_R = 21.8$  min (major enantiomer),  $t_R = 25.7$  min (minor enantiomer); minor diastereomer:  $t_R = 18.8$  min (major enantiomer),  $t_R = 15.1$  min (minor enantiomer). Anal. calcd. for  $C_{31}H_{27}NO_4$ : C, 77.97; H, 5.70; N, 2.93. Found: C, 78.02; H, 5.68; N, 2.95.

#### (*R*)-methyl 3-hydroxy-4-oxo-4-phenylbutanoate (6a)



Yellow oil; 61% yield; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.42 (dd, J = 15.9, 7.8 Hz, 1H), 2.69 (dd, J = 15.9, 3.3 Hz, 1H), 3.52 (s, 3H), 3.80 (br, 1H), 5.53 (br, 1H), 7.30 (t, J = 7.8 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.74 (d, J = 6.9 Hz, 1H); <sup>13</sup>C (75

MHz, CDCl<sub>3</sub>):  $\delta$  40.5, 52.3, 70.4, 128.7, 129.0, 133.3, 134.2, 170.8, 199.8;  $v_{\text{max}}$ : 1099, 1165, 1264, 1438, 1597, 1683, 1733, 3461 cm<sup>-1</sup>.  $[\alpha]_D^{25} = -10.6$  (*c* 0.10, CH<sub>2</sub>Cl<sub>2</sub>, 87% ee). Enantiomeric excess of the product was determined by chiral stationary phase

Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using a ChiralCel OD-H column (hexanes/i-PrOH 92:8 at 1.0 mL/min), major enantiomer:  $t_R = 18.9$  min, minor enantiomer:  $t_R = 22.7$  min. Anal. calcd. for C<sub>11</sub>H<sub>12</sub>O<sub>4</sub>: C, 63.45; H, 5.81. Found: C, 63.35; H, 5.83.

#### (R)-methyl 3-hydroxy-4-oxo-4-(4-methoxyphenyl)butanoate (6b)

MeO

Brown oil; 66% yield; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>): δ 2.50 .OMe (dd, J = 15.9, 8.4 Hz, 1H), 2.79 (dd, J = 15.9, 3.3 Hz, 1H), 3.66 (s, 3H), 3.81 (s, 3H), 5.33 (dd, J = 8.4, 3.3 Hz, 1H), 6.90 (d, J = 9.0 Hz, 2H), 7.86 (d, J = 9.0 Hz,

1H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>): δ 41.2, 52.6, 56.0, 70.1, 114.5, 126.0, 131.3, 164.5, 171.2, 198.2;  $v_{\text{max}}$ : 784, 985, 1107, 1168, 1244, 1376, 1600, 1738, 2981 cm<sup>-1</sup>.  $[\alpha]_D^{25} = 42.5$ (c 0.04, CH<sub>2</sub>Cl<sub>2</sub>, 84% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using a ChiralPak ID column (hexanes/i-PrOH 85:15 at 1.0 mL/min), major enantiomer:  $t_R = 79.9$  min, minor enantiomer:  $t_R = 60.9$ min.

#### (R)-2-(3-hydroxy-2-oxo-1-tritylindolin-3-yl)-N-methylacetamide (7)



White solid; 90% yield; m.p. 218-220 °C; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>): δ 2.43 (d, J = 14.7 Hz, 1H), 2.59-2.64 (m, 4H), 5.09 (s, 1H), 6.18 (d, J = 6.6 Hz, 1H), 6.82 (d, J = 3.6 Hz, 1H), 7.01-7.33 (m, 15H); <sup>13</sup>C (75) MHz, CDCl<sub>3</sub>): δ 26.4, 42.9, 74.2, 74.4, 116.1, 122.8, 123.5, 126.9, 127.7, 128.4, 129.1, 130.1, 141.7, 142.5, 170.2, 178.1; v<sub>max</sub>: 1002, 1033, 1154, 1314, 1449, 1534, 1597, 1649, 1670, 1720, 3418, 3639

cm<sup>-1</sup>.  $\left[\alpha\right]_{D}^{25}$  = -0.94 (c 0.10, CH<sub>2</sub>Cl<sub>2</sub>, 96% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using a ChiralPak AD-H column (hexanes/i-PrOH 85:15 at 1.0 mL/min), major enantiomer: t<sub>R</sub> = 10.3 min, minor enantiomer:  $t_R = 9.0$  min. Anal. calcd. for  $C_{30}H_{26}N_2O_3$ : C, 77.90; H, 5.67; N, 6.06. Found: C, 77.70; H, 6.27; N, 5.58.

#### (R)- 3-Hydroxy-1-methyl-3-(phenylethynyl)pyrrolidine-2,5-dione (9)



Yellow oil; 76% yield; <sup>1</sup>H (500 MHz, CDCl<sub>3</sub>):  $\delta$  3.03 (d, J = HO N-1H), 7.23-7.38 (m, 5H); <sup>13</sup>C (125 MHz, CDCl<sub>3</sub>):  $\delta$  25.7, 44.8, 68.7, 85.4, 87.6, 121.1 128.6, 129.7, 132.2, 173.3, 175.6;  $v_{max}$ : 686, 755, 993, 1109, 1273, 1380, 1437, 1689, 1786, 2228, 2202

cm<sup>-1</sup>.  $\left[\alpha\right]_{D}^{25} = 20.0$  (c 0.06, CH<sub>2</sub>Cl<sub>2</sub>, 76% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using a ChiralPak IB column (hexanes/*i*-PrOH 90:10 at 1.0 mL/min), major enantiomer:  $t_R = 11.8$  min, minor enantiomer:  $t_R = 14.5$  min.

#### (3aR,8aS)-8-Trityl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-3a-ol (10)

Pale yellow solid; 64% yield; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>): δ 2.43-2.49 (m, 2H), 3.71 (ddd, J = 15.3, 9.6, 4.8 Hz, 1H), 4.00 (ddd, J = 8.7, 6.6, 2.1 Hz, 1H), 5.30 (s, 1H), 5.82 (s, J



= 8.1 Hz, 1H), 6.68 (t, J = 6.6 Hz, 1H), 6.78 (t, J = 7.8 Hz, 1H), 7.22-7.41 (m, 16H); <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>): δ 40.1, 67.4, 75.8, 86.4, 101.7, 114.5, 118.8, 123.2, 127.0, 129.0, 130.6, 131.3, 143.2, 150.1;  $v_{\text{max}}$ : 1012, 1107, 1177, 1370, 1444, 1478, 1602, 1711 cm<sup>-1</sup>.  $[\alpha]_{\text{D}}^{25} =$ -48.9 (c 0.11, CH<sub>2</sub>Cl<sub>2</sub>). Anal. calcd. for C<sub>20</sub>H<sub>21</sub>NO<sub>4</sub>: C, 83.03; H, 6.01; N, 3.34. Found:

C, 82.81; H, 6.42; N, 3.31.

#### (3a*R*,8a*S*)- 3,3a,8,8a-Tetrahydro-2*H*-furo[2,3-*b*]indol-3a-ol (11)<sup>23a,29</sup>



White solid; 83% yield; <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>): δ 2.22-2.28 (m, 1H), 2.33-2.43 (m, 1H), 3.54-3.62 (m, 3H), 3.94-4.00 (m, 1H), 5.31 (s, 1H), 6.53 (d J = 7.8 Hz, 1H), 6.73 (t, J = 7.8 Hz, 1H), 7.08 (t, J = 7.8 Hz, 1H), 6.53 (d J = 7.2 Hz, 1H),; <sup>13</sup>C (75 MHz, CDCl<sub>3</sub>):  $\delta$  41.1, 67.5,

89.5, 99.5, 109.6, 119.6, 124.2, 130.1, 130.4, 149.5;  $[\alpha]_D^{25} = -111.0$  (*c* 0.10, CH<sub>2</sub>Cl<sub>2</sub>, 94% ee). Enantiomeric excess of the product was determined by chiral stationary phase HPLC analysis using an AD-H (hexanes: i-PrOH 81:19 at 0.7 mL/min), major enantiomer:  $t_R = 26.1$  min, minor enantiomer:  $t_R = 21.6$  min.

#### **Additional References**

- 24. (a) Maeda, H.; Takahashi, K.; Ohmori, H. *Tetrahedron* 1998, 54, 12233. (b) Huang, Y.; Berthiol, F.; Stegink, B.; Pollard, M. M.; Minnaard, A. J. *Adv. Synth. Catal.* 2009, 351, 1423.
- 25. Cao, S.-H.; Zhang, X.-C.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2011, 2668.
- 26. Aliwaka, K.; Mimura, S.; Numata, Y.; Mikami, K. Eur. J. Org. Chem. 2011, 62.
- 27. (a) Shintani, R.; Takatasu, K.; Hayashi, T. *Chem. Commun.* 2010, 46, 6822. (b) Jung, H. H.; Buesking, A. W.; Ellman, J. A. *Org. Lett.* 2011, 13, 3912. (c) Guan, X.-Y; Wei, Y.; Shi, M. *Chem. Eur. J.* 2010, 16, 13617.
- (a) Lee, M.-Y.; Lin, H.-Y.; Cheng, F.; Chiang, W.; Kuo, Y.-H. *Food Chem. Toxicol.* **2008**, *46*, 1933-. (b) Kato, T.; Tomita, N.; Hoshikawa, M.; Ehara, K.; Shima, J.; Takahashi, N.; Sugiyama, H. *Heterocycles* **1998**, *47*, 497.
- 29. Kawasaki, T.; Takamiya, W.; Okamoto, N.; Nagaoka, M.; Hirayama, T. *Tetrahedron Lett.* **2006**, *47*, 5379.



Figure S-1. ORTEP Drawing of Compound 3o.



Figure S-2. ORTEP Drawing of Compound 3r.







<sup>1</sup>H NMR of **3a** 



<sup>1</sup>H NMR of **3d** 



<sup>13</sup>C NMR of **3d** 



<sup>1</sup>H NMR of **3e** 



<sup>13</sup>C NMR of **3e** 



<sup>1</sup>H NMR of **3f** 



<sup>13</sup>C NMR of **3f** 







<sup>1</sup>H NMR of **3h** 



<sup>13</sup>C NMR of **3h** 



<sup>1</sup>H NMR of **3i** 



<sup>13</sup>C NMR of **3i** 



<sup>1</sup>H NMR of **3j** 



<sup>13</sup>C NMR of **3j** 



<sup>1</sup>H NMR of **3k** 



<sup>13</sup>C NMR of **3**k







86.109

73.257

42.194

- 1500C

52.533

143.353 141.571 137.572 132.282 131.728 129.369 129.369 127.974 127.290 118.410

177.169 170.139



S-25



<sup>1</sup>H NMR of **3m** 



<sup>13</sup>C NMR of **3m** 



<sup>1</sup>H NMR of **3n** 



<sup>13</sup>C NMR of **3n** 



 $^{13}$ C NMR of **30** 



<sup>1</sup>H NMR of **3p** 



<sup>13</sup>C NMR of **3p** 



2.987 2.935 2.872 2.819 2.819 2.191 2.117

4.319

5.051

3.633

7.236 7.194 7.194 7.167 7.167 7.167 7.167 7.082 7.082 7.002 6.714

S-30



<sup>1</sup>H NMR of **3r** 



<sup>13</sup>C NMR of **3r** 















<sup>13</sup>C NMR of **9** 



<sup>13</sup>C NMR of **10** 



230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm (f1)





| Results        |          |        |        |          |
|----------------|----------|--------|--------|----------|
| Retention Time | Area     | Area % | Height | Height % |
| 32.458         | 30708247 | 50.10  | 309008 | 60.87    |
| 39.383         | 30590716 | 49.90  | 198621 | 39.13    |
| Totals         |          |        |        |          |
|                | 61298963 | 100.00 | 507629 | 100.00   |



| SPD-10AVvp |  |
|------------|--|
| Ch1-254nm  |  |
| Results    |  |

| Retention Time | Area     | Area % | Height | Height % |
|----------------|----------|--------|--------|----------|
| 31.942         | 93472424 | 98.16  | 844661 | 98.22    |
| 40.725         | 1752787  | 1.84   | 15274  | 1.78     |
|                |          |        |        |          |
| Totals         |          |        |        |          |
|                | 95225211 | 100.00 | 859935 | 100.00   |





|        | Alva      | Alca /0 | Intight | Integrit 70 |
|--------|-----------|---------|---------|-------------|
| 10.208 | 53854485  | 49.85   | 1491566 | 58.36       |
| 13.625 | 54168814  | 50.15   | 1064324 | 41.64       |
|        |           |         |         |             |
| Totals |           |         |         |             |
|        | 108023299 | 100.00  | 2555890 | 100.00      |







Results Retention Time Area % Height Height % Area 353211 11085686 49.76 54.94 9.075 11192615 10.575 50.24 289671 45.06 Totals 100.00 22278301 642882 100.00









Ch1-254nm Results

| Retention Time | Area     | Area % | Height  | Height % |
|----------------|----------|--------|---------|----------|
| 9.625          | 63499241 | 98.41  | 1742295 | 98.54    |
| 12.250         | 1028100  | 1.59   | 25731   | 1.46     |
| Totals         |          |        |         |          |
|                | 64527341 | 100.00 | 1768026 | 100.00   |









| Ch1-254nm<br>Results |          |        |        |          |
|----------------------|----------|--------|--------|----------|
| Retention Time       | Area     | Area % | Height | Height % |
| 13.300               | 14632028 | 50.36  | 296318 | 55.99    |
| 16.783               | 14421834 | 49.64  | 232920 | 44.01    |
| Totals               |          |        |        |          |
|                      | 29053862 | 100.00 | 529238 | 100.00   |

SPD-10AVvp







Ch1-254nm Results Retention Time Height Height % Area Area % 56569833 50.42 1736617 60.38 9.317 13.467 55636275 49.58 1139353 39.62 Totals 112206108 100.00 2875970 100.00







| Results        |          |        |         |          |
|----------------|----------|--------|---------|----------|
| Retention Time | Area     | Area % | Height  | Height % |
| 8.892          | 21615768 | 50.08  | 706123  | 59.83    |
| 12.900         | 21550640 | 49.92  | 474053  | 40.17    |
| Totals         |          |        |         |          |
|                | 43166408 | 100.00 | 1180176 | 100.00   |
|                | 43166408 | 100.00 | 1180176 |          |







| Ch | -254n | l |
|----|-------|---|
|    |       |   |

| Retention Time | Area     | Area % | Height  | Height % |
|----------------|----------|--------|---------|----------|
| 9.025          | 37750398 | 50.03  | 1256751 | 61.09    |
| 13.367         | 37698967 | 49.97  | 800601  | 38.91    |
| Totals         |          |        |         |          |
|                | 75449365 | 100.00 | 2057352 | 100.00   |



| Results       |   |
|---------------|---|
| Retention Tim | e |

| Retention Time | Area     | Area % | Height  | Height % |
|----------------|----------|--------|---------|----------|
| 8.917          | 74562993 | 96.37  | 2320387 | 97.39    |
| 13.450         | 2809969  | 3.63   | 62096   | 2.61     |
| Totals         |          |        |         |          |
|                | 77372962 | 100.00 | 2382483 | 100.00   |





| Ch1-254nm      |          |        |        |          |
|----------------|----------|--------|--------|----------|
| Results        |          |        |        |          |
| Retention Time | Area     | Area % | Height | Height % |
| 8.842          | 17385204 | 50.12  | 542624 | 60.71    |
| 13.225         | 17298523 | 49.88  | 351157 | 39.29    |
| Totals         |          |        |        |          |
|                | 34683727 | 100.00 | 893781 | 100.00   |
|                |          |        |        |          |





| SPD-10AVvp<br>Ch1-254nm<br>Results |          |        |        |          |
|------------------------------------|----------|--------|--------|----------|
| Retention Time                     | Area     | Area % | Height | Height % |
| 13.017                             | 10959181 | 49.96  | 209649 | 60.90    |
| 20.050                             | 10978224 | 50.04  | 134611 | 39.10    |
| Totals                             |          |        |        |          |
|                                    | 21937405 | 100.00 | 344260 | 100.00   |







| Retention Time | Area     | Area % | Height | Height % |
|----------------|----------|--------|--------|----------|
| 12.142         | 21664266 | 49.97  | 524088 | 56.94    |
| 15.750         | 21688044 | 50.03  | 396261 | 43.06    |
| Totals         |          |        |        |          |
|                | 43352310 | 100.00 | 920349 | 100.00   |



| SPD-10AVvp |
|------------|
| Ch1-254nm  |
| Results    |

| Retention Time | Area     | Area % | Height  | Height % |
|----------------|----------|--------|---------|----------|
| 12.042         | 72208595 | 98.50  | 1688011 | 98.66    |
| 16.017         | 1096059  | 1.50   | 22955   | 1.34     |
| Totals         |          |        |         |          |
|                | 73304654 | 100.00 | 1710966 | 100.00   |







| SPD-10AVvp<br>Ch1-254nm<br>Results |          |        |        |          |
|------------------------------------|----------|--------|--------|----------|
| Retention Time                     | Area     | Area % | Height | Height % |
| 21.283                             | 27696650 | 51.06  | 498155 | 58.68    |
| 28.667                             | 26548120 | 48.94  | 350722 | 41.32    |
| Totals                             |          |        |        |          |
|                                    | 54244770 | 100.00 | 848877 | 100.00   |



| SPD-10AVvp<br>Ch1-254nm<br>Results |          |        |         |          |
|------------------------------------|----------|--------|---------|----------|
| Retention Time                     | Area     | Area % | Height  | Height % |
| 23.358                             | 77574547 | 96.43  | 1228466 | 96.77    |
| 31.792                             | 2871566  | 3.57   | 40986   | 3.23     |
| Totals                             |          |        |         |          |
|                                    | 80446113 | 100.00 | 1269452 | 100.00   |







| SPD-10AVvp<br>Ch1-254nm<br>Results |          |        |        |          |
|------------------------------------|----------|--------|--------|----------|
| Retention Time                     | Area     | Area % | Height | Height % |
| 16.225                             | 22044345 | 50.41  | 523551 | 58.34    |
| 21.383                             | 21688563 | 49.59  | 373895 | 41.66    |
| Totals                             |          |        |        |          |
|                                    | 43732908 | 100.00 | 897446 | 100.00   |



| Ch1-254nm                 |          |        |         |          |
|---------------------------|----------|--------|---------|----------|
| Results<br>Retention Time | Area     | Area % | Height  | Height % |
| 16.200                    | 49696575 | 96.32  | 1180557 | 96.4     |
| 21.450                    | 1900619  | 3.68   | 43215   | 3.52     |
| Totals                    |          |        |         |          |
| i otais                   | 51597194 | 100.00 | 1223772 | 100.0    |







| SPD-10AVvp<br>Ch1-254nm<br>Results |           |                     |         |                        |
|------------------------------------|-----------|---------------------|---------|------------------------|
| Retention Time                     | Area      | Area %              | Height  | Height %               |
| 21.767                             | 58689326  | 50.04               | 946878  | 60.29                  |
| 31.342                             | 58592579  | 49.96               | 623682  | 39.71                  |
| Totals                             |           | 201133946 - 100.177 |         | 17 - 18 M P - 1 M - 10 |
|                                    | 117281905 | 100.00              | 1570560 | 100.00                 |



| Ch1-254nm                 |          |        |        |          |
|---------------------------|----------|--------|--------|----------|
| Results<br>Retention Time | Area     | Area % | Height | Height % |
| 21 408                    | 48645441 | 97.10  | 820902 | 97 34    |
| 31.767                    | 1453690  | 2.90   | 22440  | 2.66     |
| Totals                    |          |        |        |          |
|                           | 50099131 | 100.00 | 843342 | 100.0    |





#### SPD-10AVvp Ch1-254nm Results

| Retention Time | Area     | Area % | Height  | Height % |
|----------------|----------|--------|---------|----------|
| 15.133         | 24909407 | 37.40  | 645488  | 44.24    |
| 18.892         | 24182057 | 36.31  | 504753  | 34.59    |
| 22.025         | 8866769  | 13.31  | 171928  | 11.78    |
| 25.717         | 8647666  | 12.98  | 136928  | 9.38     |
| Totals         |          |        |         |          |
|                | 66605899 | 100.00 | 1459097 | 100.00   |



#### SPD-10AVvp Ch1-254nm Results

| Retention Time | Area     | Area % | Height  | Height % |
|----------------|----------|--------|---------|----------|
| 15.242         | 719788   | 0.96   | 23126   | 1.75     |
| 19.008         | 8804862  | 11.74  | 194452  | 14.69    |
| 22.058         | 63437002 | 84.61  | 1070816 | 80.89    |
| 25.942         | 2012941  | 2.68   | 35473   | 2.68     |
| Totals         |          |        |         |          |
|                | 74974593 | 100.00 | 1323867 | 100.00   |







| Ch1-254nm      |          |        |        |          |
|----------------|----------|--------|--------|----------|
| Results        |          |        |        |          |
| Retention Time | Area     | Area % | Height | Height % |
| 17.083         | 20548192 | 49.46  | 493422 | 54.36    |
| 20.158         | 20993883 | 50.54  | 414201 | 45.64    |
| Totals         |          |        |        |          |
|                | 41542075 | 100.00 | 907623 | 100.00   |







| Results        |          |        |        |          |
|----------------|----------|--------|--------|----------|
| Retention Time | Area     | Area % | Height | Height % |
| 60.083         | 7835175  | 49.69  | 63867  | 56.66    |
| 80.525         | 7934106  | 50.31  | 48855  | 43.34    |
| Totals         |          |        |        |          |
|                | 15769281 | 100.00 | 112722 | 100.00   |





| Results        |          |        |        |          |
|----------------|----------|--------|--------|----------|
| Retention Time | Area     | Area % | Height | Height % |
| 8.900          | 12825943 | 49.43  | 481591 | 52.90    |
| 10.158         | 13123457 | 50.57  | 428776 | 47.10    |
| Totals         |          |        |        |          |
|                | 25949400 | 100.00 | 910367 | 100.00   |







| Results        |          |        |         |          |
|----------------|----------|--------|---------|----------|
| Retention Time | Area     | Area % | Height  | Height % |
| 11.950         | 17980478 | 50.14  | 890060  | 55.77    |
| 14.450         | 17879392 | 49.86  | 705947  | 44.23    |
| Totals         |          |        |         |          |
|                | 35859870 | 100.00 | 1596007 | 100.00   |



| SPD-10AVvp |
|------------|
| Ch1-254nm  |
| Results    |

| Retention Time | Area     | Area % | Height  | Height % |
|----------------|----------|--------|---------|----------|
| 11.833         | 56403955 | 87.79  | 2313695 | 89.12    |
| 14.483         | 7845276  | 12.21  | 282320  | 10.88    |
| Totala         |          |        |         |          |
| Totais         | 64249231 | 100.00 | 2506015 | 100.00   |
|                | 07277251 | 100.00 | 2570015 | 100.00   |











