Supporting Information

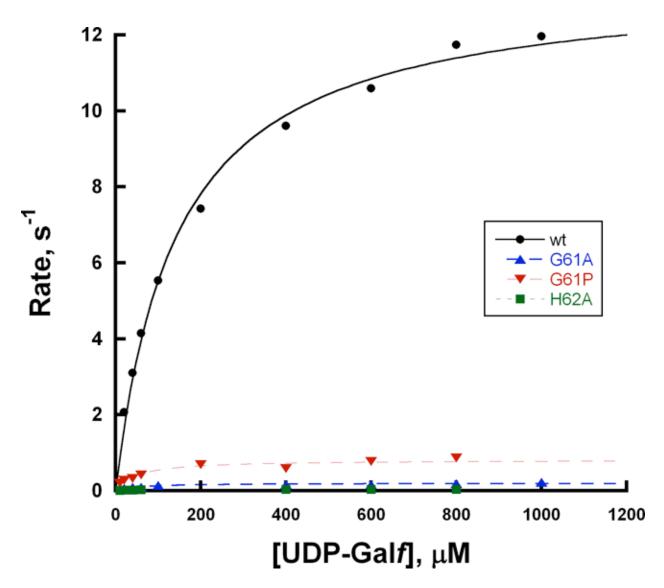
Crystal Structures of *Trypanosoma cruzi* UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

This research was supported by NIH grant R01 GM094468 (to P.S. and J.J.T).

Richa Dhatwalia,^{†,||} Harkewal Singh,^{†,||} Michelle Oppenheimer,[#] Pablo Sobrado,[#]

and John J. Tanner^{†,‡,*}

[†]Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA [#]Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA [‡]Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA


^{II}These authors contributed equally to this work.

Corresponding author

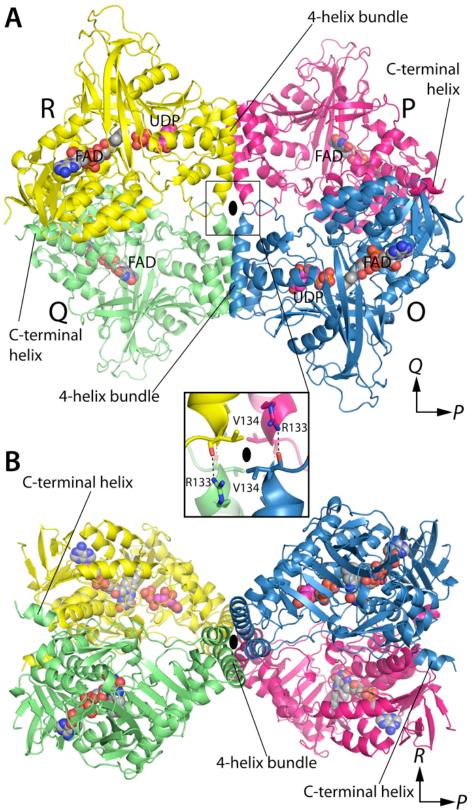

Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA; email: tannerjj@missouri.edu; phone: 573-884-1280; fax: 573-882-2754

Table of Contents

Figure S1. Steady-state kinetic characterization of TcUGM and histidine loop mutants.	S-3
Figure S2. Structure of the AfUGM tetramer.	S-4

Figure S1. Steady-state kinetic characterization of TcUGM and the TcUGM histidine loop mutants G61A, G61P, and H62A. The activity was determined by monitoring the formation UDP-Gal*p* from UDP-Gal*f*. The data were fit to the Michaelis-Menten equation.

Figure S2. Structure of the AfUGM tetramer. (A) The tetramer is viewed down the *R* molecular 2-fold axis. Each chain has a different color. Inset: Intersubunit hydrogen bonds formed by Arg133 at the intersection of molecular 2-fold axes. (B) The tetramer is viewed down the Q-axis.