Why the bigger live longer and travel farther:

animals, vehicles, rivers and the winds

Prof. Adrian Bejan Duke University

Supplementary Document

Supplementary Information A

The scales of a two-dimensional turbulent jet are [12]

$$
\overline{u}_c = U \left(\frac{x}{x_0}\right)^{-1/2} \tag{A1}
$$

$$
\gamma \frac{\mathcal{D}}{\mathbf{x}_0} = \frac{4}{3} \tag{A2}
$$

where $\gamma = 7.67$ is an empirical constant. In the limit $x_0 \ll L$ (or $\varepsilon \ll 1$), the travel time from $x = x_0$ to $x = L$ along the jet axis is

$$
t \sim 3.83 \frac{D}{\epsilon^3 U} \tag{A3}
$$

The corresponding length of travel is

$$
L \sim 5.75 \frac{D}{\epsilon^2} \tag{A4}
$$

Supplementary Information B

 The turbulent plume [12] rising above a concentrated heat source q[W] has a centerline speed (\overline{v}_{c}) that decreases with altitude (y),

$$
\overline{\mathbf{v}}_{\mathbf{c}} = \left(\mathbf{K} \frac{\mathbf{q}}{\mathbf{y}}\right)^{1/3} \tag{B1}
$$

where K is a constant of order $g\beta\alpha/k$, where g is the gravitational acceleration, β is the coefficient of volumetric thermal expansion of the fluid, α is the thermal diffusivity, and k is the thermal conductivity. If the length scale of the heat source is D, then $q \sim q'' D^3$, where q'' is the volumetric heat generation rate. The highest speed occurs in the vicinity of the source, \overline{v}_c (y = D), and the lowest is at y = L, which marks the travel of the flow. As in Eq. (2), we define the plume travel as $\overline{v}_c (y = L)/\overline{v}_c (y = D) \sim \epsilon \ll 1$, therefore

$$
L \sim \frac{D}{\epsilon^3} \tag{B2}
$$

The life time of the fluid packet is the integral of $dt = dy/\overline{v}_c$, from $y = D$ to $y = L$,

$$
t \sim \frac{3D^{1/3}}{4\epsilon^4 (q'''K)^{1/3}}
$$
 (B3)

Equations (B2) and (B3) show that larger plumes (with larger D) travel farther and have longer life spans.

Supplementary Information C

 The inefficiency of flow systems is due to finite sizes, which means finite flow resistances (fluid flow, heat transfer, mass transfer, etc.). Consider a power plant as a system (open or closed) in steady state. Inside the system there are components (e.g., heat exchangers) of surface area A, which have the function of transferring the heat current q from a hot fluid (T_H) to a cold fluid (T_L) . In Fig. C1 the system is closed and executes cycles. The thermodynamic imperfection due to the surface A is measurable as the rate of entropy generation associated with the component [14]

$$
\dot{S}_{gen} = \frac{q}{T_L} - \frac{q}{T_H} \approx \frac{q\Delta T}{T_L^2}
$$
\n(C1)

where $\Delta T = T_H - T_L$, and $\Delta T \ll (T_H, T_L)$. The heat current is proportional to the size of the surface [12]

$$
q = h A \Delta T \tag{C2}
$$

where h is the overall convective heat transfer or mass transfer coefficient. Combining Eqs. (C1) and C2), and recognizing $T_L \dot{S}_{gen}$ as the useful power destroyed because of the irreversibility of heat transfer components (see the Gouy Stodola theorem [16]), we obtain

$$
T_{L}\dot{S}_{gen} \cong \frac{q^{2}}{T_{L}h\,A} \tag{C3}
$$

The power output of the plant is

$$
\dot{W} = \dot{W}_{rev} - T_L \dot{S}_{gen}
$$
 (C4)

where \dot{W}_{rev} is the power output in the limit of reversible operation. The second law efficiency of the power plant (η_{II}) is a number between 0 and 1 [14, 16], which after combining Eqs. (C3) and (C4) becomes

$$
\eta_{II} = \frac{\dot{W}}{\dot{W}_{rev}} = 1 - \frac{q^2}{T_L \dot{W}_{rev} h \, A}
$$
\n(C5)

Next, if we use $A^{1/2}$ as an indicator of the length scale of the power plant of mass M, then $A^{1/2}$ is proportional to $M^{1/3}$, and A scales as $M^{2/3}$. In conclusion, Eq. (C5) reduces to

$$
\eta_{II} = 1 - C'M^{-k} \tag{C6}
$$

where C' is a constant and $k = 2/3$. Equation (C6) shows that η_{II} increases monotonically with the size of the power plant system. We express the same trend analytically if we approximate Eq. (C6) locally [at a point (η_{II}, M) on the curve] with a power-law expression

$$
\eta_{\rm II} = C'' M^{\alpha} \tag{C7}
$$

where C'' is a constant, and $\eta = \eta_{II} \eta_{C}$, where η_{C} is the Carnot efficiency of the power plant. Note that Eq. (C7) is the same as Eq. (22), where $C_1 \eta_C = C''$. If we require that Eqs. (C6) and (C7) match in value (η_{II}) and slope $(d\eta_{II}/dM)$ at the point (η_{II}, M) , then

$$
\frac{k}{\alpha} = \frac{1 - \eta_{\text{II}}}{\eta_{\text{II}}}
$$
 (C8)

The η_{II} data for the efficiency of modern power generation technology show that $\eta_{II} \ll 1$ [14,

16]. This means that α is comparable with k but smaller than k, approximately $\alpha \approx \eta_{\text{II}} k$. Note that the factors C' and C'' do not appear in Eq. (C8).

Figure C1