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Supplementary Information A 

 The scales of a two-dimensional turbulent jet are [12] 
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where γ = 7.67  is an empirical constant.  In the limit 0x << L ( or ε << 1), the travel time from 

0x = x  to x = L along the jet axis is 

  3
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 (A3) 

The corresponding length of travel is 

  2
DL ~ 5.75
ε

 (A4) 

Supplementary Information B 

 The turbulent plume [12] rising above a concentrated heat source q[W] has a centerline speed 

c(v )  that decreases with altitude (y), 
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where K is a constant of order gβα/k , where g is the gravitational acceleration, β  is the 

coefficient of volumetric thermal expansion of the fluid, α  is the thermal diffusivity, and k is the 

thermal conductivity.  If the length scale of the heat source is D, then 3q ~ q D′′′ , where q′′′  is the 

volumetric heat generation rate.  The highest speed occurs in the vicinity of the source, 

cv (y = D) , and the lowest is at y = L, which marks the travel of the flow.  As in Eq. (2), we 

define the plume travel as c cv (y = L)/v (y = D) ~ ε << 1, therefore  
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  3
DL ~
ε

 (B2) 

The life time of the fluid packet  is the integral of cdt  = dy/v ,  from y = D to y = L, 
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Equations (B2) and (B3) show that larger plumes (with larger D) travel farther and have longer 

life spans. 

Supplementary Information C   

 The inefficiency of flow systems is due to finite sizes, which means finite flow resistances 

(fluid flow, heat transfer, mass transfer, etc.).  Consider a power plant as a system (open or 

closed) in steady state.  Inside the system there are components (e.g., heat exchangers) of surface 

area A, which have the function of transferring the heat current q from a hot fluid (TH) to a cold 

fluid (TL).  In Fig. C1 the system is closed and executes cycles.  The thermodynamic 

imperfection due to the surface A is measurable as the rate of entropy generation associated with 

the component [14] 
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where ΔT = TH – TL, and ΔT << (TH, TL).  The heat current is proportional to the size of the 

surface [12] 

  q h A T= Δ   (C2) 

where h is the overall convective heat transfer or mass transfer coefficient.  Combining Eqs. (C1) 

and C2), and recognizing L genT S&  as the useful power destroyed because of the irreversibility of 

heat transfer components (see the Gouy Stodola theorem [16]), we obtain 
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The power output of the plant is 

  rev L genW W T S= − && &  (C4) 

where revW&  is the power output in the limit of reversible operation.  The second law efficiency of 

the power plant II( )η   is a number between 0 and 1 [14, 16], which after combining Eqs. (C3) 

and (C4) becomes 

  
2

II
rev L rev

W q1
W T W h A

η = = −
&

& &
 (C5) 

 Next, if we use A1/2 as an indicator of the length scale of the power plant of mass M, then A1/2 

is proportional to M1/3, and A scales as M2/3.  In conclusion, Eq. (C5) reduces to 

  k
II 1 C M −′η = −  (C6) 

where C′  is a constant and k = 2/3.  Equation (C6) shows that IIη  increases monotonically with 

the size of the power plant system.  We express the same trend analytically if we approximate 

Eq. (C6) locally [at a point (ηII, M) on the curve] with a power-law expression 

  II C Mα′′η =  (C7) 

where C′′   is a constant, and η = ηII ηC, where ηC is the Carnot efficiency of the power plant.  

Note that Eq. (C7) is the same as Eq. (22), where  1 CC C′′η = .  If we require that Eqs. (C6) and 

(C7) match in value II( )η  and slope II(d / dM)η  at the point II( , M)η , then  
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The IIη  data for the efficiency  of modern power generation technology show that IIη  << 1 [14, 
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16].  This means that α  is comparable with k but smaller than k, approximately  kIIα ≅ η .  Note 

that the factors C′  and C′′  do not appear in Eq. (C8).   
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Figure C1 


