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Supplementary Information A

The scales of a two-dimensional turbulent jet are [12]
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where y = 7.67 is an empirical constant. In the limit xo << L (or ¢ << 1), the travel time from

X =X¢ to x =L along the jet axis is
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The corresponding length of travel is
L ~5.75 22 (A4)

Supplementary Information B
The turbulent plume [12] rising above a concentrated heat source q[W] has a centerline speed

(v.) that decreases with altitude (y),
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where K is a constant of order gfa/k, where g is the gravitational acceleration, B 1is the
coefficient of volumetric thermal expansion of the fluid, o is the thermal diffusivity, and k is the
thermal conductivity. If the length scale of the heat source is D, then q ~ q"D?, where q” is the
volumetric heat generation rate. The highest speed occurs in the vicinity of the source,
Ve (y = D), and the lowest is at y = L, which marks the travel of the flow. As in Eq. (2), we

define the plume travel as V.(y = L)/V.(y = D) ~ ¢ << 1, therefore
2



D

L~= (B2)
€

The life time of the fluid packet is the integral of dt = dy/v,, fromy=Dtoy=1L,
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Equations (B2) and (B3) show that larger plumes (with larger D) travel farther and have longer
life spans.
Supplementary Information C

The inefficiency of flow systems is due to finite sizes, which means finite flow resistances
(fluid flow, heat transfer, mass transfer, etc.). Consider a power plant as a system (open or
closed) in steady state. Inside the system there are components (e.g., heat exchangers) of surface
area A, which have the function of transferring the heat current q from a hot fluid (Ty) to a cold
fluid (Ty). In Fig. Cl1 the system is closed and executes cycles. The thermodynamic

imperfection due to the surface A is measurable as the rate of entropy generation associated with

the component [14]
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where AT = Ty — Tr, and AT << (Ty, Tr). The heat current is proportional to the size of the
surface [12]

q=hAAT (C2)
where h is the overall convective heat transfer or mass transfer coefficient. Combining Egs. (C1)

and C2), and recognizing TLSgen as the useful power destroyed because of the irreversibility of

heat transfer components (see the Gouy Stodola theorem [16]), we obtain
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The power output of the plant is
W = Weew — Ty Sgen (C4)
where W, is the power output in the limit of reversible operation. The second law efficiency of
the power plant (1) is a number between 0 and 1 [14, 16], which after combining Egs. (C3)
and (C4) becomes
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Next, if we use A" as an indicator of the length scale of the power plant of mass M, then A"

is proportional to M'3, and A scales as M?”. In conclusion, Eq. (C5) reduces to
Mu=1-CM™* (C6)
where C’ is a constant and k = 2/3. Equation (C6) shows that ny; increases monotonically with

the size of the power plant system. We express the same trend analytically if we approximate

Eq. (C6) locally [at a point (), M) on the curve] with a power-law expression

Mn = Cc'M* (C7)
where C" is a constant, and 1 = ny N, where nc is the Carnot efficiency of the power plant.
Note that Eq. (C7) is the same as Eq. (22), where Cmn. = C". If we require that Egs. (C6) and

(C7) match in value (ny) and slope (dny /dM) at the point (ny, M), then
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The ny data for the efficiency of modern power generation technology show that n <<1 [14,



16]. This means that o is comparable with k but smaller than k, approximately o = npk. Note

that the factors C' and C" do not appear in Eq. (C8).
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