Channel properties reveal differential expression of TARPed and TARPless AMPARs in *stargazer* neurons

Cécile Bats, David Soto, Dorota Studniarczyk, Mark Farrant and Stuart G. Cull-Candy

Department of Neuroscience, Physiology and Pharmacology University College London, Gower Street, London WC1E 6BT U.K.

Figures

1	Supplementary Fig. 1: Properties of homomeric GluA3 CP-AMPARs determined	
	from macroscopic responses and single-channel currents.	2
2	Supplementary Fig. 2: Glutamate-evoked whole-cell currents from control and	
	<i>stg/stg</i> stellate cells	3

Tables

1	Supplementary Table 1: Basic properties of EPSCs in control and stg/stg	
	stellate cells	4
2	Supplementary Table 2: Properties of synaptic and extrasynaptic AMPARs in	
	control and stg/stg stellate cells	5
3	Supplementary Table 3: Single-channel conductance of recombinant homomeric	
	GluA3 AMPARs from non-stationary fluctuation analysis and measurement of	
	directly-resolved channel events	6

a Macroscopic currents

Supplementary Fig. 1: Properties of homomeric GluA3 CP-AMPARs determined from macroscopic responses and single-channel currents.

(a) Macroscopic responses to 10 mM glutamate recorded in outside-out patches from tsA201 cells were used to determine (i) the rectification index (+60/–60 mV), and (ii) weighted-mean single-channel conductance (from NSFA). (b) Measurements from resolved single-channel currents in the tail of macroscopic responses: (i) Pooled distributions of channel conductance determined from all-point amplitude histograms of selected events (see **Fig. 6**), (ii) Co-expression with γ -2 and γ -7 increased mean single-channel conductance. Group comparisons were performed using a Kruskal-Wallis rank-sum test followed by pair-wise Wilcoxon rank-sum tests with Holm's sequential Bonferroni correction. Asterisks denote statistical significance compared to GluA3 alone (*P<0.05, **P<0.001); ## indicates significant difference from γ -7 (P<0.001).

Supplementary Fig. 2: Glutamate-evoked whole-cell currents from control and *stg/stg* stellate cells.

(a) Time course of response to bath-applied glutamate (100 μ M) in the presence of CTZ (100 μ M) and D-AP5 (20 μ M) in a representative control stellate cell (–20 mV). (b) Time course of glutamate-evoked current in a representative *stg/stg* stellate cell. (c) Pooled data showing the reduced whole-cell conductance in *stg/stg* stellate cells (n = 5 control cells from 2 animals and 8 *stg/stg* cells from 3 animals; ** *P*<0.01).

	Control	stg/stg	Р
eEPSC (acute slice)			
RI _(+40/-60)	0.39 ± 0.07 (9)	0.17 ± 0.02 (8) *	0.0061
qEPSC (acute slice)			
Amplitude at -80 mV (-pA)	$44.8\pm2.7~(17)$	$\textbf{22.6} \pm \textbf{1.0} \text{ (15) }^{\textbf{***}}$	5.9e–6
Amplitude CV	0.39 ± 0.07 (17)	0.27 ± 0.02 (15) ***	3.4e–6
10-90% Rise time (μ s)	173 ± 9 (18)	196 \pm 8 (8) *	0.026
$ au_{ m w,\ decay}$ (ms)	$0.92\pm0.06~(18)$	0.86 ± 0.07 (8) n.s.	0.72
Peak conductance (–80 mV; pS)	623.4 ± 52.0 (6)	285.9 \pm 11.9 (5) **	0.0081
Peak conductance (+60 mV; pS)	405.3 \pm 40.4 (6) †	234.8 \pm 13.5 (5) ¶ *	0.014
$RI_{(+60/-80)}$ (count matched)	0.66 ± 0.02 (6)	0.79 ± 0.07 (5) n.s.	0.12
<i>RI</i> _(+60/-80)	0.35 ± 0.08 (6)	0.09 \pm 0.03 (5) **	0.0043
Frequency (+60/-80 mV)	0.58 ± 0.07 (6)	0.14 \pm 0.03 (5) **	0.0081
Single-channel conductance (pS)	$30.6 \pm 3.7~(18)$	16.1 \pm 1.1 (8) **	0.0017
Np	$24.9 \pm 3.6 \ (18)$	19.9 \pm 1.5 (8) n.s	0.66
mEPSC (dissociated culture)			
<i>RI</i> _(+60/-80)	1.14 ± 0.30 (5)	0.47 ± 0.10 (9) ***	0.001

Supplementary Table 1: Basic properties of EPSCs in control and *stg/stg* stellate cells. Data are presented as mean \pm s.e.m. (from *n* cells). Statistical significance was determined using the non-parametric Wilcoxon rank sum test (unpaired). Asterisks denote significance: * *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001. Paired comparisons were made using the Wilcoxon signed rank test: † *P* = 0.036 versus –80 mV, ¶ *P* = 0.059 versus –80 mV. Note, as synaptic channel conductance was determined in the presence of strontium (see **Methods**), the absolute conductance value should not be compared directly with previously published values obtained in solutions containing calcium. Recordings from tsA201 cells showed that the weighted-mean single-channel conductance (determined by NSFA) was reduced by approximately 20% in strontium for both GluA1 and GluA1/2 combinations (data not shown).

	Control	stg/stg	Р
qEPSC PhTX-433 block			
(PhTX/control, -80 mV)			
Charge (per PF stim.)	0.57 ± 0.08 (5)	0.22 ± 0.05 (6) *	0.022
Amplitude	$0.79\pm0.08~(5)$	0.85 ± 0.02 (6) n.s.	0.17
Frequency	0.75 ± 0.11 (5)	0.26 ± 0.05 (6) *	0.0081
Excised somatic patches			
$ au_{ m w,des}~(m ms)$	$3.07 \pm 0.43 \ (11)$	2.49 ± 0.28 (8) n.s.	0.48
Steady-state (% peak)	$\textbf{2.97}\pm\textbf{0.76}\;\textbf{(9)}$	2.87 ± 0.69 (10) n.s.	0.91
RI _(+60/-60)	0.41 ± 0.06 (9)	0.25 ± 0.02 (10) *	0.02
Channel conductance (NSFA) (pS)	$\textbf{27.5} \pm \textbf{1.2} \ \textbf{(9)}$	26.2 \pm 3.2 (8) n.s	0.47
Channel conductance (Resolved ^{\dagger}) (pS)	35.2 ± 1.8 (8)	31.6 \pm 2.2 (7) n.s.	0.40

Supplementary Table 2: Properties of synaptic and extrasynaptic AMPARs in control and *stg/stg* stellate cells. Data are presented as mean \pm s.e.m. (from *n* cells). Statistical significance was determined using the non-parametric Wilcoxon rank sum test (unpaired). Asterisks denote significance: * *P* < 0.05. †Note, direct measurement of single-channel current amplitudes was performed in a subset of recordings (8 out of 9 control and 7 out of 8 *stg/stg* cells).

Single-channel conductance (pS)						
	NSFA	Resolved	n	Р		
GluA3	$\textbf{22.4}\pm\textbf{0.5}$	$\textbf{24.4} \pm \textbf{1.5}$	3	0.500		
GluA3 + γ -2	$\textbf{36.6} \pm \textbf{2.3}$	$\textbf{37.8} \pm \textbf{2.1}$	5	0.625		
GluA3 + γ -7	$\textbf{38.5} \pm \textbf{3.3}$	43.7 ± 1.5	7	0.578		

Supplementary Table 3: Single-channel conductance of recombinant homomeric GluA3 AMPARs from non-stationary fluctuation analysis and measurement of directly-resolved channel events. Data are presented as mean \pm s.e.m. (from *n* outside-out patches from tsA201 cells), and represent weighted mean single-channel conductance from NSFA of macroscopic responses, and measurements from multiple all-point amplitude histograms of selected events in the tail of the same macroscopic currents. Paired comparisons were made using the Wilcoxon signed rank test.