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Supplementary Figures

Supplementary Figure 1: Structure of training data. The columns of the feature matrix X are weighted 
coverage vectors, constructed using information available in the BAM file. These features convey information 
on such metrics as read depth, paired end signals, mapping quality, base content, etc., and are evaluated on 
several scales and relative locations.  The local scale is a 100 bp window, while the left and right flanks are 
1000 bp to the left and right (respectively) of this window.  These “subjects” correspond to the rows of the 
feature matrix X, as well as the elements in the class label vector Y, and are offset from each other by 50 bp. 

Supplementary Figure 1: Structure of training data. 



  
Supplementary Figure 2: Performance relative to existing structural variant discovery methods. We obtained structural 
variant predictions via a leave-one-out cross validation scheme, where each individual, in turn, was left out of the training 
stage.  Predictions were then made for this individual, and the resulting call sets were compared against a set of gold standard 
positives and known false positive calls.  Calls were required to have at least 50% reciprocal overlap with the gold standard set 
for consideration in this assessment.  Comparisons were made with the call sets released in ref. 1 (the designations used there 
are carried over here).  For deletion calls (a), forestSV (orange curve) had better sensitivity than any single donor method, while 
providing specificity comparable to the most specific methods.  forestSV also provided a combination of sensitivity and 
specificity that matched that of the merged and genotyped call set (*), with even higher sensitivity at the cost of some 
specificity.  In terms of duplications, which few methods attempt because of their difficult nature, forestSV performed better 
than both of the donor methods (b).   Sensitivity and specificity are shown with their relationship to the forestSV event score 
for deletions (c) and duplications (d). 

Supplementary Figure 2: Performance relative to existing structural variant discovery methods. 



 

  

Supplementary Figure 3: Effect on predictive performance of adding related individuals to the training set. When 
including additional unrelated individuals in the training set, performance (here measured in area under the ROC 
curve, AUC) increases in a linear fashion.  Training sets that include related individuals (red points) fall well within the 
90% prediction interval of this “unrelated” model, suggesting that their contribution to increasing performance is no 
different than it would be when adding unrelated individuals. 

Supplementary Figure 3: Effect on predictive performance of adding related individuals to the 
training set. 



 

  

Supplementary Figure 4: Size distributions and characterization of affinity of calls for various genomic features. We compared 
forestSV deletion and duplication calls to call sets comprising the work in ref. 1 based on their retrotransposon content, segmental 
duplication content, proximity to centromeres and telomeres, and size.  Calls made by forestSV were evaluated separately in three 
categories: all forestSV calls, forestSV calls filtered at a score of 0.65, and filtered forestSV calls that are unique to forestSV, i.e. 
calls that did not intersect any call from the call sets comprising ref. 1.  Alu elements, and SINEs in general, are more predominant 
among deletion calls unique to forestSV (21% and 23% respectively, of called sequence). forestSV fares well in regions of 
segmental duplication, compared to some other methods (31% of sequence in called deletions, and 77% of sequence in called 
duplications). Duplications called by forestSV are more likely to fall within 500kb of a centromere (23% of unique calls) than other 
methods, and 3% of unique duplication calls fall within 500kb of a telomere.   

Supplementary Figure 4: Size distributions and characterization of the affinity of calls for various 
genomic features. 



  

Supplementary Figure 5: Relationship between reciprocal overlap and forestSV event score.  We took 
merged/genotyped deletion calls from 1KG trios (ref. 1) and intersected them with forestSV calls from the 
corresponding individuals.  We found that on average, 89.5% of 1KG calls intersected a forestSV call by 1bp or more.  
Here we show that increasing forestSV event scores generally coincide with increased reciprocal overlap with 1KG 
deletion calls.  

Supplementary Figure 5: Relationship between reciprocal overlap and forestSV event score. 



  

Supplementary Figure 6: Sensitivity of structural variant discovery methods when evaluated on the NA12878 gold 
standard call set. Here we show the sensitivity of forestSV vs. each of the individual call sets, as well as that of the 
merged/genotyped set from ref. 1. We also show the number of unique calls from each call set to give some 
surrogate for specificity when comparing call sets. At 68% and 57% sensitivity for > 0bp and > 50% reciprocal overlap, 
respectively, it was exceeded only by the YL call set (which made over 30,000 unique calls to achieve 86% and 64% 
sensitivity at > 0bp and > 50% overlap) and the merged/genotyped call set (74% and 63%  at > 0bp and > 50% 
overlap). 

Supplementary Figure 6: Sensitivity of structural variant discovery methods when evaluated in 
the NA12878 gold standard call set. 



  

Supplementary Figure 7: Relationship between forestSV event scores and event size.  We investigated the test set calls from 
the 1KG data to determine whether an event size bias existed in the forestSV score.  Deletions (a) seem to be relatively 
unbiased in their event scores for events larger than several hundred base pairs.  Conversely, duplications (b) show a clear 
absence of small events in high-scoring calls.  This may be a side-effect of the small number of duplications used for training. 

Supplementary Figure 7: Relationship between forestSV event scores and event size. 



 

 

Supplementary Figure 8: Performance of forestSV on low coverage (5x) sequencing data. We investigated the 
performance of forestSV on low-coverage sequencing data by downsampling to 5x coverage the same (high coverage) 
BAM files we had previously used for training and cross-validation.  We applied forestSV to these downsampled BAM 
files and constructed sensitivity-specificity curves based on > 50% reciprocal overlap with calls in the gold standard set 
(as was done in Supplementary Figure 2). When examining the AUC, performance fell by 15% (0.99 to 0.84) for 
deletions and 20% (0.96 to 0.77) for duplications. This suggests that forestSV has the potential to be of use to 
researchers with low-coverage data, but as anticipated, expectations of performance would need to be adjusted 
accordingly. 

Supplementary Figure 8: Performance of forestSV on low coverage (5x) sequencing data. 



  

Supplementary Figure 9: Accumulation of deletion and duplication calls in the 1KG data with decreasing event 
score threshold. As the event score threshold is relaxed, deletion and duplication calls are accumulated in 
characteristically different ways, suggesting that when applying the same threshold to deletions and duplications, the 
sensitivity to duplications will be considerably less than for deletions.  At a threshold of 0.65, 1386-2506 deletions are 
called per individual and 44-144 duplications are called. 

Supplementary Figure 9: Accumulation of deletion and duplication calls in the 1KG data 
with decreasing event score threshold. 



  

Supplementary Figure 10: Estimation of error rates based on family relationships. We validated the forestSV framework by 
applying it to unpublished whole genome sequencing data from a family in an autism cohort.  After calling structural variants 
genome-wide, we examined how the rate of Mendelian inconsistency varied with the event score for deletions (a).  Similarly, 
we examined how the rate of monozygotic (MZ) twin discordance varied with the event score (b).  Analogous plots are shown 
for duplication events in (c) and (d); note the higher error rates for duplications vs. deletions at the same event score threshold. 
These two rates are an indication of the overall error rate, and serve to inform the user about a sensible threshold for predicted 
structural variants.  Based on the observation of these error rates, calls from forestSV should be thresholded between 0.65-0.70 
to maintain an error rate of 5% or less in deletions and ~10% in duplications.  Using a threshold of 0.65 in these individuals led 
to call sets containing 2,300-2,593 unique deletion events, and 53-72 duplication events. 

Supplementary Figure 10: Estimation of error rates based on family relationships. 



 

  

Supplementary Figure 11: Classifier improvement with additional training data. forestSV provides a 
framework that is flexible and is able to learn through exposure to additional and better data, resulting in 
improved structural variant discovery.  This is demonstrated here, where we made successive rounds of 
deletion calls in NA12878 by using first 1, then 2, 3, 4, and 5 other individuals to train the Random Forest 
classifier used to make the calls.  There is a steady improvement in both the sensitivity-specificity curves and 
the area under the ROC curve (AUC) when additional data is used in training.  Performance was evaluated 
using the same gold standard set as in Supplementary Figure 2. 

Supplementary Figure 11: Classifier improvement with additional training data. 



  

Supplementary Figure 12: Random Forest permutation importance measures by class. The importance measures 
indicate a feature’s contribution to the ability of the classifier to correctly discriminate a class.  Read depth (covg) and 
paired end signals (PEdel) are consistently the most important features for discrimination of structural variants, which 
is somewhat unsurprising given that they are the two most widely used features in SV discovery methods.  However, 
we found that other features not previously used in structural variant discovery (mapq, strand, munm, and mrem) are 
also useful, especially in avoiding would-be false positive calls.  

Supplementary Figure 12: Random Forest permutation importance measures by class. 



 

  

Supplementary Figure 13: Distribution of GC content among forestSV deletion calls in NA12878.  Higher confidence 
calls have noticeably lower GC content, suggesting that the inclusion of base content as predictors in the classifier has 
the effect of an implicit GC correction. The distributions shown differ significantly (P < 10-10 by the Kolmogorov-
Smirnov test). 

Supplementary Figure 13: Distribution of GC content among forestSV deletion calls in NA12878. 



 

 

  

Supplementary Figure 14: Size distribution and event counts for the gold standard set of structural 
variants.  Finding duplication calls that were of sufficient confidence to include in the gold standard 
set (and consequently the training set) was difficult, owing to the lack of prior data and diminished 
focus on duplications by other structural variant discovery methods.  This obstacle is the most 
plausible explanation for forestSV’s performance disparity between calling deletions and duplications. 

Supplementary Figure 14: Size distribution and event counts for the gold standard set 
of structural variants. 
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Class label Description 

deletion 

subjects falling within an event called as a deletion by at least one of the 
methods from ref. 1, and having at least 90% reciprocal overall with a deletion 
call from either ref. 2 or ref. 3, with the corresponding breakpoints differing by  
less than 1 kb.  These events were considered “gold standards”.  Additional 
(non-gold standard) deletion events were added, provided that they were called 
by at least two methods from ref. 1 and were experimentally validated at least 
once. 

duplication  

subjects falling within an event called as a duplication by at least one of the 
methods from ref. 1, and having at least 90% reciprocal overall with a 
duplication call from either ref. 2 or ref. 3, with the corresponding breakpoints 
differing by  less than 1 kb.  These events were considered “gold standards”.  
Additional (non-gold standard) duplication events were added, provided that 
they were called by at least two methods from ref. 1 and were experimentally 
validated at least once. 

deletion-flanking 
subjects falling within 1 kb up- or downstream of events labeled as deletion (and 
not intersecting events of other class types). 

duplication-flanking 
subjects falling within 1 kb up- or downstream of events labeled as duplication 
(and not intersecting events of other class types). 

false positive deletion 
subjects falling within singleton deletion calls that were experimentally 
invalidated in ref. 1. 

false positive duplication 
subjects falling within singleton duplication calls that were experimentally 
invalidated in ref. 1. 

invariant 
subjects sampled from regions where no calls were made (in ref. 1) by any 
method in any of the high coverage samples.  In addition, windows that 
intersected with gaps in the reference assembly were dropped. 

Supplementary Table 1: Description of class labels. Each subject in the training data was labeled as one of seven classes.  
Consequently, predictions on new genomic data represent the confidence of belonging to one of these classes. 

Supplementary Table 1: Description of class labels. 



 

 

Weighted coverage vector Abbreviation Description 

read depth covg 
a log2 ratio of the mean within-window coverage to the chromosomal 
median coverage 

read depth difference  covgdiff 
the difference between the maximum and minimum log2 read depth 
within a window 

coverage weighted by mapping 
quality 

mapq coverage weighted by mapping quality as found in the BAM file 

coverage weighted by positive 
outlier read pairs 

PEdel 
The distribution of the insert sizes of read pairs, and insert sizes outside 
of the median ± 4 × MAD are considered outliers.  If the read in question 
belongs to an outlier pair, a weight of -1 is given, and 0 otherwise. 

difference in outlier read pair 
signal 

PEdeldiff 
the difference between the within-window maximum and minimum for 
the weighted coverage vector used in PEdel 

coverage weighted by negative 
outlier read pairs 

PEdup 
analogous to PEdel, but outliers are have a smaller (rather than larger) 
than expected insert size 

coverage weighted by A 
content 

A contributing reads are weighted by the percent A content 

coverage weighted by C 
content 

C contributing reads are weighted by the percent C content 

coverage weighted by G 
content 

G contributing reads are weighted by the percent G content 

coverage weighted by T 
content 

T contributing reads are weighted by the percent T content 

coverage weighted by aligner 
insertions 

CIGARi 
each read is weighted by the number of insertions the aligner performed 
on it (as provided by the CIGAR string) 

coverage weighted by aligner 
deletions 

CIGARd 
each read is weighted by the number of deletions the aligner performed 
on it (as provided by the CIGAR string) 

coverage weighted by strand 
concordance 

strand 
if the read and its mate are mapped to the same strand, a weight of 1 is 
given, 0 otherwise 

coverage weighted by mate 
unmapped 

munm if a read’s mate is unmapped, the read is given a weight of 1, 0 otherwise 

coverage weighted by mate 
mapping remotely 

mrem 
if a read’s mate maps to farther than 10 Mb away, or to a different 
chromosome, the read is given a weight of 1, 0 otherwise 

  

Supplementary Table 2: Description of the weighted coverage vectors. Fifteen weighted coverage vectors are constructed by 
based on information available within the BAM file.  These weighted coverage vectors are summarized at three relative locations 
and scales (1kb left, 100 bp local, and 1kb right) by the featMat() function, producing a feature matrix with 45 columns. 

Supplementary Table 2: Description of the weighted coverage vectors. 



Supplementary Results 

Benchmarking on 1000 Genomes Project data 
We compared test set deletion calls made by forestSV to deletion calls from the 1KG merged/genotyped 
call set from ref. 1 and found that an average of 90% of the 1KG calls intersected with forestSV calls by 
1bp or more (NA12878: 91%, NA12891: 82%, NA12892: 89%, NA19240: 96%, NA19238: 86%, NA19239: 
95%).  An average of 51% of these calls had reciprocal overlap of > 50% with calls generated by forestSV 
(NA12878: 51%, NA12891: 50%, NA12892: 58%, NA19240: 51%, NA19238: 48%, NA19239: 47%). We 
observed a roughly linear relationship between reciprocal overlap (between 1KG and forestSV calls) and 
the forestSV event score, with higher-scoring events having greater reciprocal overlap (see 
Supplementary Figure 5).   In addition, we plotted the forestSV event score against event size and found 
that large duplications tend to receive larger event scores, while deletions tend to be less size-biased in 
their event scores (Supplementary Figure 7).  This inability to reliably call smaller duplications may 
reflect the scarcity of good training examples for this class of SV (note the small number of duplication 
examples in Supplementary Figure 14), or it could reflect a smaller number of features that contain 
information useful for classifying duplications, or both.  Calls made by forestSV were compared with the 
other call sets based on retrotransposon content, segmental duplication content, proximity to 
centromeres and telomeres, and size distributions (Supplementary Figure 4).  In addition, sensitivity was 
evaluated on the NA12878 gold standard used in ref. 1 (Supplementary Figure 6).  We also demonstrate 
that forestSV does work on low coverage data (5x), and compare performance metrics relative to high 
coverage data (Supplementary Figure 8).  Finally, we show the accumulation of calls as the event score is 
relaxed in Supplementary Figure 9. 

The curves depicted in Supplementary Figure 2 are useful for gauging the performance of methods 
relative to each other, but cannot be taken as absolute measures of performance and error rates.  This 
particular benchmark used only the most obvious examples of SV events and false positive calls as the 
reference set.  Performance when calling more ambiguous events is unclear and difficult to estimate.  
Even with extensive experimental validation efforts, some SV calls are difficult to conclusively validate or 
invalidate, making the calculation of an absolute error rate problematic.   In the following section, we 
augment the performance analysis described here on the 1KG data with error rate estimates based on 
family relationships in an independent data set. 

Improvement of method performance with increasing number of genomes in 
the training set 
One characteristic of forestSV that sets it apart from other SV discovery techniques is that it dynamically 
learns what an SV is, using supervised learning techniques.  At the time of this writing, forestSV already 
performs very well in comparison to its peers.  However, since its definition of an SV is embodied by the 
training data from which it learns, rather than a stereotype hard-coded into its algorithms, we anticipate 
a steady improvement in discovery accuracy as we accumulate more and better training data.  
Improvement will come through continually educating the classifier with confirmed SVs and newly 
defined error modes, rather than a fundamental rewrite of the concept. 



To demonstrate this phenomenon, we successively trained the classifier on 1, 2, 3, 4, and finally 5 
genomes, while at each iteration making calls in a separate left-out genome, NA12878 (Supplementary 
Figure 11).  We found that as we added additional genomes to the training set, the performance of SV 
discovery in NA12878 improved incrementally (as measured by sensitivity-specificity curves as well as 
the area under the ROC curve (AUC)).  Encouraged by these findings, we will periodically update the 
classifier on our website as additional training data becomes available. 

Supplementary Data 

File 1 
Genomic regions used for training 

File 2 
Structural variant calls produced by forestSV in NA12878, NA12891, NA12892, NA19240, NA19238, and 
NA19239 
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