Supplemental Tables and Figures

Table S1. Transcript specific primers used for transcript accumulation analyses (sqRT-PCR and qRT-PCR) throughout this study.

Reference Number	Target	Direction	Primer Sequence $(5' \rightarrow 3')$	
AJ236020	Ph18S	Forward	TTAGCAGGCTGAGGTCTCGT	
		Reverse	AGCGGATGTTGCTTTTAGGA	
JQ031717	PhAAE	Forward	GTACAGTCACAGAGGAGC	
		Reverse	CGGGAGTCGTTATTTCGC	
JQ031717	PhAAE	Forward	ATGGTGCCCAAAGCATGT	
		Reverse	GAGCTGGCAATCAAGGAATC	
L10115	PhFBP1	Forward	TGCGCCAACTTGAGATAGCA	
		Reverse	TGCTGAAACACTTCGCCAATT	
EU751616	PhCM1	Forward	CCCTGATGAGCACCCATTC	
		Reverse	ACTGCATGGGTGGCAACAC	
AY705976	PhPAL1	Forward	GCTAGGCGGTGAGACGCTAA	
		Reverse	CTCGGACAGCTGCACTGTCA	
CO805160	PhPAL2	Forward	ACTGGCAGGCCTAATTCCAA	
		Reverse	GCGAAACGCTTCTTCAGCAT	
AY611496	PhBPBT	Forward	AGTGATGCACCCGGTCTTGT	
		Reverse	CAATTCTCGGCACCACACTG	
AY233465/ AY233466	PhBSMT	Forward	TTTTCAGTGGAGTGCCTGGTT	
		Reverse	GGCACCTGAGATAGCCACATG	
HM447144	PhC4H1	Forward	AGCAGGTGTAACAAACTGCAA	
		Reverse	AAACTGGGACAGGGATAGGA	
HM447145	PhC4H2	Forward	AACTTGTCCAAACAAAATGGA	
		Reverse	TGGCAATTTAAAACGTTTGCT	
AY705977	PhIGS1	Forward	GCCTATGTCATGCCATTGAA	
		Reverse	TGCTTTAATTGTGTAGGCTGC	
HM447143	PhMYB4	Forward	AACAATTTCTTTTGCTGCTGGAA	
		Reverse	TTCATCGTCCTTGATTTGTTCAA	
DQ243784	PhPAAS	Forward	TCCTTGTAGTTCTAGTACTGCTGGAA	
		Reverse	TCAACAGCAGTTGTTGAAGTAGTTC	
DQ767969	PhCFAT	Forward	AGGCAACTCGCAATGGAAGT	
-		Reverse	AGGCGCTGAAACACTCCAAT	
FJ657663	PhKAT1	Forward	GCCCCACCATTCACATTAAC	
		Reverse	GCCCCACCATTCACATTAAC	
AY705977	PhODO1	Forward	TGCTTCAACCATGTCGAATTG	
		Reverse	TCCGTGCCTGTTCTCTACGTT	

Figure S1. A schematic of the *PhAAE* cloning strategy. SMART-RACE cloning kit (Clontech, Mountain View, CA) was used according to the manufacturer's specifications. In brief: a 5' cDNA library (universal adapter linked to the guanine cap, UA) and a 3' cDNA library (universal adapter linked to the poly-adenylated tail, UA) were generated from total RNA isolated from MD petal tissue. *PhAAE* specific primers (GSP-F and GSP-R) were designed from the EST sequence information available for *PhAAE*. The 'north' section of the PhAAE transcript was amplified and cloned out of the 5' library, and the 'south' section was amplified and cloned out of the 3' library. From these sections primers were designed outside of the coding sequence (CDS) and the entire *PhAAE* CDS was amplified and cloned into a pGEM®-T Easy vector (Promega, Madison, WI) from a general cDNA population produced from MD petal tissue. The CDS construct was sequenced extensively (UF ICBR sequencing core, Gainesville, FL).

Figure S2. A comparative *PhAAE* transcript accumulation analysis with MD and 44568 (sqRT-PCR). Floral developmental analysis used MD and ethylene-insensitive 44568 flowers from 11 sequential stages collected on one day at 16:00 h (A). Ethylene treatment (two uL L⁻¹) analysis used excised MD (B) and 44568 (C) whole flowers treated for 0, 1, 2, 4, and 8 h. Total RNA was isolated, purified, and quantified. 50 ng of total RNA for each sample was used for sqRT-PCR reactions. Transcript specific primers for *PhAAE* were used with 27 cycles of amplification. *Ph18S* was used as a loading control with 18 cycles of amplification.

Figure S3. PhAAE recombinant protein expression in *E. coli* BL21/(DE3) cells. A 10% SDS-PAGE gel image of proteins from a standard protein ladder (1), cell fractions representing a non-induced culture harboring pET32-PhAAE (2), an induced (1 mM IPTG at 37^oC for 18 H) culture harboring pET32-PhAAE (3), soluble fraction of the induced culture (4), insoluble pellet fraction from induced culture (5), and soluble fraction after inclusion body isolation and His-Bind® resin purification (6). Prediction models estimate the TRX-PhAAE fusion protein to be approximately 78 kilo Daltons (KDa).

Figure S4. Schematic representation of the full-length *PhAAE* transcript model as shown in Vector NTI AdvanceTM 11. Depicted are the 5' and 3' untranslated regions (UTR), the coding sequence (CDS), the RNAi induction sequence region used for generating the *ir*-*PhAAE* plants, the highly conserved AMP-binding site (IPR020845), and the AMPdependent synthase/ligase domain (IPR000873).

Figure S5. Comparative sqRT-PCR transcript accumulation analysis. MD and *ir-PhAAE* T_0 flowers were developmentally staged and collected at 16:00 H, total RNA was isolated, purified, and quantified. 50 ng of total RNA for each sample was used for sqRT-PCR reactions. Transcript specific primers for *PhAAE* were used with 24 cycles of amplification. *Ph18S* was used as a loading control with 15 cycles of amplification. All *ir-PhAAE* T_0 individuals are a result of an independent transformation event.

Figure S6. FVBP emission analysis of representative plants from MD, *ir-PhMYB4*, *ir-PhAAE*, and resulting progeny from crossing *ir-PhMYB4* and *ir-PhAAE*. Developmentally staged flowers (stage 8) were used to collect FVBP emission at 18:00 h (mean \pm se; n = 3). Four major FVBP compounds were identified and quantified with all measurements ng/g fresh weight/hour. Figure S1.

1	CCGGGCTTCT	GGCGGTTGLG	G GGGCTTCCAG TCTTATACAA	CCACTATAGG CAATTTCCTT	GTATACAAAT CCGGGGTCTG	TGTACATTCT TCACTGAG	C ATCATCCTAT CCTCTTTCTC
		MÀ	L T A T A T T	RGGSALF	N S C L Q T	PKFQSL	Q K P T F I S S
121	TCTCTTCCAC	CAAAATGGCT	T CTGACAGCCA CAGCCACCAC	CAGAGGTGGC TCAGCCCTCC	CAAATTCATG CCTTCAAACC	CCAAAGTTTC AATCTTTA	CA AAAACCCACC TTCATTTCTT
	FPT	NKI	TKPR TKH	ISAVQSP	P S T T K W	NLESWK	T K P A F Q L P
241	CCTTTCCCAC	CAACAAAAAA	A ACCAAGCCAA GAACCAAACA	CATCTCAGCC GTTCAATCAC	CACCTTCAAC AACAAAATGG	AATCTTGAAA GTTGGAAA	AC AAAACCAGCT TTTCAACTAC
	DYP	DK 7	ELESVLK	TLSTYPP	IVFAGE	ARNLEE	K LGE AALG
361	CTGATTACCC	TGATAAAG"T	T GAGCTGGAAT CTGTTCTGAA	GACCCTTTCA ACTTATCCAC	CAATTGTATT TGCTGGGGAA	GCAAGGAATC TTGAAGAG	AA ATTAGGTGAA GCTGCTCTTG
	NAF	LLO	GGDCAES	FKEFSAN	INIBDTE	RVMLOM	G VVL MFGG
481	GAAATGCTTT	TTTATTGCIA	A GGTGGTGATT GTGCTGAGAG	TTTTAAAGAG TTTAGTGCTA	ATAATATTAG AGATACTTTT	AGAGTTATGT TGCAGATG	G TGTIGTTCTT ATGT TTGGTG
401	O M P	VII	VGPMAGO	PAK PPS D	DEEEKD	G V K L P S	Y P G D N V N G
601	OTCANATOCC	TOTTATCALG	a aragarbabb raacbearch	ATTTOCCANG CONGATCTO	ATOCATTTON AGAGAAGGAT	GOODTANAC TACCANGT	TA CAGGGAGAC AATGTGAATG
001	DAF	DET	SPTPDPH	P M V P A Y T	O S V A T L	N L L P A F	A SGG Y A A M
721	CTGATGCTTT	TANCANANIA	A TCANGANTAC CTGACCCCCA	TAGATGATG AGIGCOTATA	CTCANTCTOT AGCTACOCTO	AACCTCCTCA GGGCATTT	C TAGIGAGAT TATOCTOCCA
122	O P V	NOI	NLDETDO	S F O G D P V	PELAHP	V D F A M G	E M T A A G I. T
841	1003030000	TAACCAGTAG	A ANTOTOGACT TOACTANTCA	GAGCGAGCAA GOTGACAGGT	ACCORDANCE GOCTCACCOA	ATTALCANA CONTOOOC	TT CATGACTOCT COTGGGCTTA
041	U D H	TTY			D V P O A T		
961	CAGTTGACCA	CACAATCASC			TACOTTATAN ACAACACT		
501	WHO I I ON OUN	Chunnich.o	S ACIACIACIAS ACTICIONE	ATCICATORO TOSCITICICI	Internation Action	ACAMOOMOO ATTCANCT	
	AHH	I I W T	GERTRQL	DGAHVEP	LRGIAN	PLGIKV	SHKMDPDE
1081	CTGCTCATAT	GATTTGGGTT	T GGGGAACGGA CAAGGCAATT	GGATGGTGCT CAFGTTGAGT	TTCTGAGAGG AATTGCCAAT	CCACTTOGTA TCAAGGTG	AG CCACAAAATG GATCCAGATG
	LVK		ILNPQNK	PGRITVI	TRMGAD	NMRVKL	PHLIRAVR
1201	AACTAGTCAA	GCTTATTGAC	C ATTCTAAACC CTCAAAATAA	ACCAGGAAGA ATAACAGTGA	TCACCAGGAT GGGAGCTGAC	AACATGAGAG TAAAGCTT	C CCATCTGATC AGGGCTGTCC
	GAG	QIV	TWVSDPM	HGNTTKA	PCGLKT	RSFDSI	RAELRAFF
1321	OTGGAGCGGG	TCAAATTO?C	C ACTTGGGTTA GTGATCCTAT	GCATGGGAAT ACCACTAAAG	CCCCTTGTGG ACTCAAAACT	CGTTCATTCG ATTCTATC	AG GGCTGAGCTA AGAGCTTTCT
10000	DVH	EQI	GSYPGGV	HLEMTGQ	NVTECV	GGSRTI	TYNDLSSR
1441	ITGATGTACA	TGAACAAGIA	A GGGAGCTATC CTGGT6GGGT	GCATCTGGAG ATGACAGGTC	AGAATGTAAC AGAGTGCGTT	GGAGGGICTC GAACAATT	AC TTACAACGAT CTGAGCTCGC
	У Н Т	HCD	PRLNASQ	ALE LAFA	IAERLR	R R R L G P	KFSL
1561	CTACCATAC	ACATTGTGAC	C CCTAGACTGA ATGCT?CTCA	AGCACTTGAA CTTGCCTTTG	CTATCGCCGA ACGACTTAGG	AGAAGAAGAC TAGGACCG	A GTTCAGTCTC TAGA AATCGT
1681	CTTGCTACCC	TTCCCCTACT	T TTAGGCTGTG AGTGTTTGTA	TGAAGGTATA AGAGTAGTAT	GCCAAGATCT AATAATAGTA	AAGCATGAAG AGCTTTAA	CG TCATCCAGTT GTGGACAAGC
1801	TOTTAATATA	TGTTAAGALG	G ACCTTTGTGT GTGTATATAT	TAGCATATOT AAJATAACTT	CTTTGCAAGT GTAGTGAGGT	AGTTCTTTAG GTTTAAAG	A AAAAAATTA AAAAACGCAA
1921	CTAGAGT						

Figure S2.

Figure S3.

Figure S4.

PhAAE

AMP-dependent synthase/ligase

Figure S5.

Figure S6.

