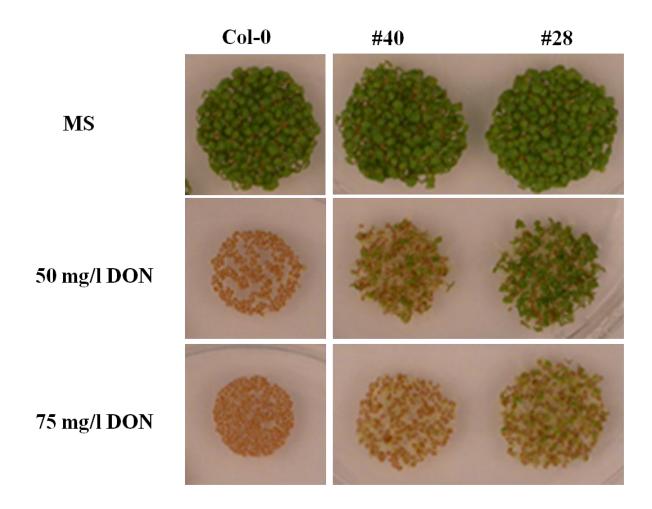
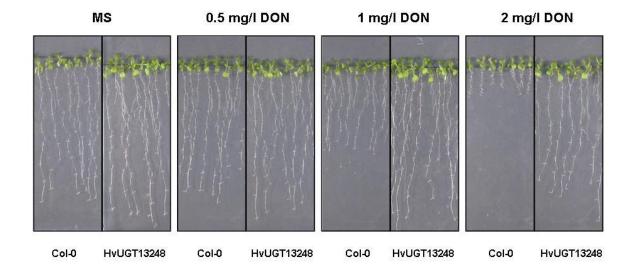
Transgenic *Arabidopsis thaliana* expressing a barley UDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol


Sanghyun Shin^{1†*}, Juan Antonio Torres-Acosta^{2*}, Shane J. Heinen¹, Susan McCormick⁴, Marc Lemmens³, Maria Paula Kovalsky Paris², Franz Berthiller³, Gerhard Adam², Gary J. Muehlbauer^{1*}

¹ Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Buford Circle, St Paul, MN 55108, USA


² Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, University Research Center Tulln, Konrad Lorenz Str. 24, A-3430 Tulln, Austria [‡] Department for Agrobiotechnology - IFA-Tulln, Center for Analytical Chemistry (Christian Doppler Laboratory for Mycotoxin Metabolism) and Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, A-3430 Tulln, Austria

⁴USDA-ARS, Bacterial Foodborne Pathogens & Mycology Research Unit, Peoria, Illinois 61604, USA

Supplementary Figure 1. Seeds from transgenic lines #28 and #40 and the non transgenic control Col-0 were germinated and grown on MS, 50 and 75 mg/L of deoxynivalenol. The high expression line #28 exhibited more and faster germination and growth than the low expression line #40.

Supplementary Figure 2. Growth of HvUGT13248 expressing *Arabidopsis thaliana* (#28) and control (Col-0) plants on MS medium containing different concentrations of DON

