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SUPPLEMENTAL METHODS 
 
 
Growth Curve Modelling 
 
For each sex, age-varying location (median), scale (coefficient of variation) and shape (skewness 
and kurtosis) of the underlying distributions of height and weight were modelled by fitting Box-
Cox t distributions.1 Age-varying functions for the four distribution parameters were fitted using 
smoothing cubic splines. To ensure a good fit with these splines and given the relatively complex 
shape of growth curves in infancy compared to later ages, a power transform of age was used to 
expand the age scale in infancy and compress it in later childhood. The optimum power 
transform and the optimum number of degrees of freedom for each cubic spline model were 
found using an optimization procedure with the Bayesian information criterion as a penalty 
function.2 An adequate goodness-of-fit for the growth curve models was confirmed using Q 
tests3 and worm plots4 (not presented).  Figure S1 shows the fit of these models to the data. 
Weight growth curves were fitted using 91,299 measures in boys and 89,603 measures in girls. 
For height, these values were 49,641 and 48,194, respectively. The median number of measures 
used to construct individual growth trajectories was 13 (IQR 7–20) for weight and 7 (IQR 4–10) 
for height. 
 
 
Weight-for-height z-Score 
 
To assess adiposity trajectories, weight-for-height z-scores were calculated from the weight and 
height z-scores, in preference to using BMI: 
 

z(weight − for − height) =
z(weight) − r⋅ z(height)

1− r2
 

 
where r is the age- and sex-specific correlation between weight and height. These allow a more 
meaningful comparison to be made between assessments of adiposity at different ages because, 
in contrast to BMI, account is taken of the varying relationship between weight and height 
through childhood.5 Furthermore, by construction, weight-for-height z-score, unlike BMI, is 
uncorrelated with height z-score at all ages. This allows regression models containing both 
measures to assess the relative strength of associations of height and adiposity with a given 
outcome. Thus, the influences of skeletal growth (the dominant factor in changes in height) and 
of accrual of fat might be differentiated. 
 
BMI and ponderal index (weight divided by height cubed) z-scores were also calculated for 
comparison with weight-for-height z-scores. Change in BMI and ponderal index z-scores for 
each growth period had similar associations with blood pressure to those of weight-for-height z-
score (not shown). However, associations were weaker and more variable during infancy for 
BMI and during later childhood for ponderal index. These indices were originally designed to 
adjust weight for variations in height so that variation in adiposity, the principal determinant of 
weight variability for a given height, might be determined. However, correlations of BMI with 
height increase with decreasing age in childhood and correlations of ponderal index increase 
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with increasing age. Thus, neither represents an adequate adjustment of weight for height 
throughout childhood. By contrast, weight-for-height z-score has zero correlation with height at 
all ages and is, therefore, optimal for this task. 
 
 
Conditional Growth Modelling 
 
Conditional growth modelling uses the standardised residuals from multiple linear regression 
analysis of the degree to which a size measure at a later age differs from that predicted by all 
prior growth measures plus the initial measure of size. Such measures are entirely uncorrelated 
with each other (statistically independent) and, when included in a multiple regression model 
with all prior growth measures upon which they are conditioned, allow the independent 
influences of growth over discrete intervals to be estimated. It has been pointed out that 
conditional growth model equations can be rewritten as traditional multiple regression models6 
that include correlated growth measures.7 Thus, the advantages of conditional growth modelling 
have been questioned. However, two important advantages over prior approaches have been 
identified: They remove the often strong correlation between different growth measures allowing 
large numbers of parameters to be included in a single, fully adjusted model of growth and they 
facilitate interpretation of the results where previous approaches, it has been argued, may lead to 
misunderstandings of the importance of specific periods of growth.7, 8 
  
The number and choice of intervals is important. Fewer intervals will increase the estimate 
accuracy for the overall influence of growth over the periods considered, but may fail to reveal 
important biological differences in the influences of growth during different stages of 
development. Increasing the number of intervals sacrifices accuracy of the estimates for greater 
temporal resolution of the influences of growth at different ages. For a given growth parameter, 
the accuracy of the estimate over an interval depends on the number of individuals whose rank 
ordering in the population changed in that time. In large datasets, this occurs sufficiently over 
relatively short intervals to allow accurate estimation with greater temporal resolution. In our 
analysis, we chose to divide growth between birth and 10 years of age into eight intervals. 
Interval length was determined using the correlation structure of the data so that an 
approximately equal change in the rank ordering of individuals occurred in each. This yields 
periods of differing chronological time but of arguably similar biological meaning and 
associations of growth in these intervals with outcome measures should have similar accuracy. 
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Figure S1. Growth curves fitted to 49,614 measures of height in boys and 48,194 measures 
of height in girls and to 91,299 measures of weight in boys and 89,603 measures of weight 
in girls between birth and age ten years. Sparse data between ages five and seven years 
separates early data drawn from personal health records and later data measured during 
clinics. The timing of these clinics and, to a lesser extent timing of routine community 
measures before five years, can be seen as clusters of data. Centile lines, separated by two 
thirds of a standard deviation, are shown. Inset figures show the good fit of the models to 
early postnatal changes in weight. 
 




