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ONLINE METHODS
CNV map. A previous study14 described an ultra-high-density set of arrays, 
consisting of 42 million oligonucleotides tiled across the genome at an average 
of one probe every 56 bp, which were used to discover CNVs in 41 genomes, 
including the 3 individual genomes analyzed here, NA15510, NA12878  
and NA10851. The CNVs in these 3 genomes were detected in two array- 
CGH experiments.

CNV calls. CNV calls were generated using the GADA segmentation algorithm18 
with parameters t = 10, a = 2.0, m = 10
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. Calls were not merged within samples 

before confidence interval design to maximize sensitivity to true breakpoints.

Confidence intervals. Here we define a breakpoint as the physical position 
at which there is a transition in relative copy number between the test and 
reference sample in a CGH experiment. As described in the main text, we 
used two likelihood-based methods for constructing a confidence interval on 
a breakpoint. The first (m1) is based on treating the CGH intensity data in the 
vicinity of a breakpoint as a simple mixture of two normal distributions, which 
leads to the following likelihood function for the breakpoint location: 
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where L is the set of all indices for probes that fall in the region left of the 
breakpoint, R the set of all indices that fall in the region right of the breakpoint, 
m̂1 and σ̂1 the estimates of the mean and s.d. of ratios in the left region, and 
m̂2 and σ̂2 the analogous estimates for the right. Z is the probability distribu-
tion function for a normal distribution with the specified mean and variance. 
We evaluate Like(B) over a grid of points, one point between each consecu-
tive probe pair in the candidate region. We use Bayes’ rule to transform the 
likelihoods into posterior probabilities, and we construct intervals centered 
on the breakpoint that are symmetric in probe space and contain 95% of this 
posterior. For full details of the algorithm, see Supplementary Note.

The second approach (m2) is predicated on a class of econometrics models 
known as structural change models. The methodology we use is based on a 
simple formulation of such a model—a linear model in which the value of the 
regression coefficient changes with time, but in a piecewise constant fashion. 
The intensity of the tth probe on the array, yt, comes from a distribution speci-
fied by δj, the mean of the jth segment: 
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where m is the number of breakpoints and the Tjs are the locations of the 
breakpoints. An asymptotic theory for inference on this model has been 
presented31, and this theory allows deduction of confidence intervals on the 
breakpoint estimator, T̂j . These confidence intervals are derived from a stoc
hastic process composed of two independent Brownian motions; the drift 
parameter of the process is a function of the ratio of the two segment means, 
whereas the scale parameter is a function of the variance and covariance of 
probe intensities. We used functions in the R package ‘strucchange’ to calcu-
late these confidence intervals32. To the best of our knowledge, the only prior 
genomics application of this method for constructing confidence intervals was 
in the study of yeast gene transcription33.

Array design. We used the results from both methods for forming confidence 
intervals (m1 and m2, see above) to construct the target regions on the cap-
ture array. To merge confidence intervals constructed by each method within 
samples, we took the intersection of corresponding intervals, and we removed 
all 326 merged confidence intervals larger than 5 kb. We further merged confi-
dence intervals between samples by taking the union of intervals. The net result 
of this process was a set of 3,712 target regions spanning 3.6 Mb of noncontigu-
ous genomic sequence. The minimum, median and maximum target region 
size were 135 bp, 506 bp and 6 kb, respectively. We believe the optimal targeting 
strategy is to target 3−5 Mb of sequence on a single capture array (385k), with 
the condition that the minimal size for a targeted region be 135 bp.

Roche/NimbleGen’s array design algorithm pads out any target region to a 
minimum length of 250 bp. After this padding, overlapping regions are con-
solidated. Probes are selected to be unique hits to the genome, allowing up to 
five insertions or deletions. There are 9,642 blocks of probes in total. Some 
target regions submitted for design to Roche did not yield any unique probes, 
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and we have at least one block for 3,263 (88%) of the target regions. Thirty-
three percent of these regions correspond to CNVs longer than 5 kb.

Capture and sequencing. The genomes of NA15510, NA10851 and NA12878 
were pooled in equimolar amounts and then hybridized to the capture array 
according to the manufacturer’s protocol. We used the FLX Standard chemistry 
for 454 sequencing.

Read mapping. We identified breakpoints by searching for reads with mapp
ings split by structural variations1. We created two pipelines for mapping 
reads to maximize sensitivity to a wide range of breakpoint structures. In 
both pipelines, reads were mapped to the whole human genome assembly 
(NCBI36). The first approach, using SSAHA2, was designed to detect break-
points from a wide variety of mutation processes: deletions, tandem duplica-
tions and dispersed duplications34. The second mapping approach used the 
command-line implementation of BLAT version 34 with all options set to 
their default values35. Full details of both mapping pipelines are presented in 
the Supplementary Note. The read mappings potentially reveal breakpoints 
down to the single-base level. There may be some ambiguity induced either by 
sequencing error or by microhomology at the breakpoint ends.

Power simulations. We considered the power of our experiment to locate a 
CNV breakpoint to be comprised of two parts: sampling power and mapping 
power. In the simulation of sampling power, our goal was to estimate the prob-
ability that a breakpoint was captured by a read at each targeted CNV locus. We 
assumed that the location and length of each read, as provided by the original 
SSAHA2 mappings, were known without error. We simulated 1,000 random 
breakpoints for each CNV and calculated the proportion of breakpoints that 
are covered by at least one read in our data.

To quantify mapping power we simulated about 400 split reads from each 
CNV and recorded the percentage of simulated reads for which the breakpoint 
is correctly identified by SSAHA2. The power to map a read containing a CNV 
breakpoint will depend upon the size of the read, the location of the break-
point within the read, the mutation process forming the read and the mapping 
algorithm. Here we explored four mutation models, including deletions with a 
range of amounts of nontemplated sequence (0−30 bp) and tandem duplica-
tions. CNV breakpoints were assumed to be randomly distributed within target  
intervals, and the length of reads from a given target region was simulated from 
the distribution of reads observed at the target in the real data.

We derived estimates of the total number of breakpoints that we expected 
to identify (the ‘total power’) by combining information on both sampling 
and mapping power. Additional details on power simulations can be found in 
the Supplementary Note.

Analysis of breakpoints. To determine a consensus of the breakpoint at  
the base-pair level, we assembled the fasta sequences of all split reads and the 
targets they intersect in a gap4 database36, allowing joins only between the 
reads and not between the targets (allowing a maximum 10% mismatch). 
Contigs were successfully assembled for 315 deletions and all 3 tandem dupli-
cations. We investigated each target locus by joining the sequences of reads 
and targets manually using the ‘find repeats’ tool of gap4 to view matches in 
a direct or inverted orientation. Inserted sequence was defined as any extra 
sequence between the breakpoints in the reads that was not present in the 
reference sequence. The sequences and sizes of flanking regions, inserted bases 
and regions of microhomology were recorded. Although there are multiple 
possible patterns of homology around a breakpoint—depending on whether 
homology is observed 5′ or 3′ of the breaks, or both, and on whether it is 
observed on the ancestral or derived chromosomes, or both—we use a very 
specific definition (what we call ‘type I’ microhomology, Supplementary  
Fig. 5). We used BLAT to match inserted sequences >19 bases back to the 
reference genome to determine whether the inserted sequence was part of the 
reference. This included regions containing more complex patterns, such as 
those with inverted sequence within the breakpoint.

Validation. Some split reads also showed evidence of inverted or inserted 
sequence, or both, in some cases originating from >3 kb away from the 
breakpoint. We validated these complex rearrangement structures by PCR 



Nature Geneticsdoi:10.1038/ng.564

and capillary resequencing in the test individuals. Primer sequences for these 
experiments are provided in Supplementary Table 2.

External data. We compiled known breakpoints from five major sequencing-
based studies of CNV; these comprised 3,731 CNV observations greater  
than 400 bp, some of which represent the same events observed multiple 
times1–3,26,37. We matched 423 CNVs from the genome-wide tiling oligo−CGH 
study to this list of events, using a threshold of 70% reciprocal overlap to 
declare two events as identical.

URLs. Manufacturer’s protocol for capture array hybridization is available 
from Roche/NimbleGen Systems, http://www.NimbleGen.com.
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