#### TCL1: A shared tumor-associated antigen for immunotherapy against

**B-cell lymphomas** 

Weng et al.

#### **Supplementary Figure legends**

Supplementary Figure 1. TCL1 expression in B cell progenitors, mature B cell subsets, and immature T cells. (A) TCL1 expression in hematopoietic stem cells (HSC - $CD19^{-}CD20^{-}CD10^{-}CD34^{+})$ , pro-B cells ( $CD19^{+}CD20^{-}CD10^{+}CD34^{+})$ , pre-B cells  $(CD19^+CD20^-CD10^+CD34^-)$ , and immature B cells  $(CD19^+CD20^+CD10^-CD34^-)$  in normal human bone marrow samples, and primary mantle cell lymphoma tumor cells was determined by flow cytometry and compared to autologous non-B cells or isotype antibody staining as control. Mean fluorescence intensity of each gated subset is indicated on right. Representative data from one of three bone marrow samples tested is shown. (B) TCL1 expression in naïve B cells (CD19<sup>+</sup>IgD<sup>+</sup>CD10<sup>-</sup>CD27<sup>-</sup>CD38<sup>-</sup>), germinal center (GC) B cells (CD19<sup>+</sup>IgD<sup>-</sup>CD10<sup>+</sup>CD27<sup>-</sup>CD38<sup>int</sup>), memory B cells (CD19<sup>+</sup>IgD<sup>-</sup> CD10<sup>-</sup>CD27<sup>+</sup>CD38<sup>-</sup>), and plasma cells (CD19<sup>+</sup>IgD<sup>-</sup>CD10<sup>-</sup>CD27<sup>+</sup>CD38<sup>hi</sup>) in normal tonsils was determined by flow cytometry and compared to autologous non-B cells as control. Mean fluorescence intensity of each gated subset is indicated on right. Representative data from one of three tonsil samples tested is shown. (C) TCL1 expression was determined by flow cytometry in 18-week-old human fetal thymocytes. Top panel. Gating strategy for Double Negative (DN), Double Positive (DP), and Single Positive (SP) CD4 and CD8 thymocytes is shown. Bottom panel. TCL1 expression (open histogram) in thymocyte subsets as compared with isotype control antibody (grey histogram) is shown. Representative data from one of two fetal thymus tissues tested is shown.

Supplementary Figure 2. Percentage of TCL1-specific T cells in T cell lines generated from normal donors. T cell lines generated from three HLA-A2<sup>+</sup> normal donors using TCL1<sub>65-79</sub> peptide were incubated with autologous CD3-depleted PBMC as antigen-presenting cells in the presence or absence of the TCL1<sub>65-79</sub> peptide, and intracellular cytokine assay was performed. The percentage of CD4<sup>+</sup> and CD8<sup>+</sup> T cells producing IFN- $\gamma$  above the background are shown.

Supplementary Figure 3. Avidity of TCL1-specific CTL.  $TCL1_{71-78}$  tetramer positive T cells were isolated from a TCL1-specific T cell line by MACS using  $TCL1_{71-78}$  tetramer PE and anti-PE microbeads. The isolated T cells were incubated with T2 cells pulsed with various concentrations of  $TCL1_{65-79}$  peptide and IFN- $\gamma$  production was determined in the supernatants by ELISA after 18 hours. Dot plot shows purity of sorted T cells. Representative data from one of two experiments.

Supplementary Figure 4. Phenotype and specificity of TCL1-specific CTL. (A) Phenotypic analysis of CD8<sup>+</sup> T cells purified from TCL1<sub>65-79</sub> peptide-specific T cell lines was performed with CD16 PE, CD56 PE, CD3 PerCP-Cy5.5, and CD8 FITC antibodies. *Top panel*. The percentage of T cells (CD3+), NK cells (CD3-CD16+CD56+), and CD8 T cells is shown. Representative data from one of three lines is shown. *Bottom* panel. Normal donor (ND) PBMC were used as control. (B) CD8<sup>+</sup> T cells purified from a TCL1<sub>65-79</sub> peptide-specific T cell line were incubated with HLA-A2<sup>+</sup> normal human bone marrow-derived CD34<sup>+</sup> hematopoietic stem cells; normal tonsil-derived naïve B cells, germinal center (GC) B cells, or memory B cells; Jeko-1 cells; and primary follicular lymphoma tumor cells (FL5). A 4-hour <sup>51</sup>Cr-release cytotoxicity assay was performed. The percent specific lysis is shown. Representative data from one of three lines is shown.

**Supplementary Figure 5. Expression of coinhibitory molecules on TCL1-specific CTL derived from lymphoma patients.** Expression of coinhibitory molecules was determined by flow cytometry on TCL1<sub>71-78</sub> tetramer<sup>+</sup> CD8<sup>+</sup> T cells (open histogram) and compared with TCL1<sub>71-78</sub> tetramer<sup>-</sup> CD8<sup>+</sup> T cells (grey histogram). Representative data from one of three lymphoma patients is shown.

| Peptide name | Position | Sequence         |
|--------------|----------|------------------|
| P1           | 1-15     | MAECPTLGEAVTDHP  |
| P2           | 5-20     | PTLGEAVTDHPDRLW  |
| P3           | 9-24     | EAVTDHPDRLWAWEK  |
| P4           | 13-28    | DHPDRLWAWEKFVYL  |
| P5           | 17-32    | RLWAWEKFVYLDEKQ  |
| P6           | 21-36    | WEKFVYLDEKQHAWL  |
| P7           | 25-40    | VYLDEKQHAWLPLTI  |
| P8           | 29-44    | EKQHAWLPLTIEIKD  |
| P9           | 33-48    | AWLPLTIEIKDRLQL  |
| P10          | 37-52    | LTIEIKDRLQLRVLL  |
| P11          | 41-56    | IKDRLQLRVLLRRED  |
| P12          | 45-60    | LQLRVLLRREDVVLG  |
| P13          | 49-64    | VLLRREDVVLGRPMT  |
| P14          | 53-68    | REDVVLGRPMTPTQI  |
| P15          | 57-72    | VLGRPMTPTQIGPSL  |
| P16          | 61-76    | PMTPTQIGPSLLPIM  |
| P17          | 65-80    | TQIGPSLLPIMWQLY  |
| P18          | 69-84    | PSLLPIMW QLYPDGR |
| P19          | 73-88    | PIMWQLYPDGRYRSS  |
| P20          | 77-92    | QLYPDGRYRSSDSSF  |
| P21          | 81-96    | DGRYRSSDSSFWRLV  |
| P22          | 85-100   | RSSDSSFWRLVYHIK  |
| P23          | 89-104   | SSFWRLVYHIKIDGV  |
| P24          | 93-108   | RLVYHIKIDGVEDML  |
| P25          | 97-112   | HIKIDGVEDMLLELL  |
| P26          | 101-116  | DGVEDMLLELLPDD   |

Supplementary Table 1. Overlapping peptides derived from TCL1



#### Supplementary Figure1 (contd.)



С













В







TCL1<sub>71-78</sub> tetramer<sup>-</sup> CD8<sup>+</sup> T cells