SUPPORTING INFORMATION

2	
3	A Complex LuxR-LuxI Type Quorum Sensing Network in a Roseobacterial Marine
4	Sponge Symbiont Activates Flagellar Motility and Inhibits Biofilm Formation
5	
6	Jindong Zan ^{1*} , Elisha M. Cicirelli ^{2a*} ,Naglaa M. Mohamed ¹ , Hiruy Sibhatu ^{3b} , Stephanie
7	Kroll ^{2c} , Ohkee Choi ^{2d} , Charis L. Uhlson ³ , Christina L. Wysoczinski ³ , Robert C. Murphy ³ ,
8	Mair E.A. Churchill ³ , Russell T. Hill ¹ and Clay Fuqua ^{2†}
9	
10	¹ Insititute of Marine and Environmental Technology, University of Maryland Center for
11	Environmental Science, 701 E Pratt St. Baltimore, Maryland 21202, USA.
12	² Department of Biology, 1001 E. 3rd St., Jordan Hall 142, Indiana University,
13	Bloomington, IN 47405, USA.
14	³ Department of Pharmacology, University of Colorado Denver, School of Medicine,
15	12801 East 17th Avenue, Aurora, CO 80045-0511, USA
16	
17	[†] For correspondence:
18	Clay Fuqua, Dept. Biol., 1001 E. 3rd St., Jordan Hall 142, Indiana Univ., Bloomington,
19	IN 47405-1847. Tel: 812-856-6005, FAX: 812-855-6705, E-mail: cfuqua@indiana.edu
20	

SUPPLEMENTARY METHODS

2 **TLC profiling of AHLs.** Five ml MB 2216 cultures from KLH11 were grown to an OD₆₀₀ 3 of 1.5 - 2.0, followed by extraction with an equal volume of dichloromethane. Culture 4 pH was monitored and was within the range of 7.6±0.2 at the time of harvesting (sterile 5 Marine Broth 2216 is pH 7.6). Following centrifugation, the organic phase was removed 6 and allowed to evaporate in a fume hood. Extracts were concentrated 1000 fold and 7 normalized to an OD₆₀₀ of 1.5 and resuspended in a final volume of approximately 5 µl 8 of acidified (0.01%) ethyl acetate and loaded onto a C18 RP-TLC plate (Mallinckrodt 9 Baker, Phillipsburg, NJ, USA). TLC plates were developed in a 60% methanol water 10 mobile phase, dried, and overlaid with 100 ml of 0.6% ATGN media supplemented with 11 40 μ g ml⁻¹ X-gal and 1 ml of an OD₆₀₀ = 12.0 suspension of the highly sensitive A. 12 tumefaciens AHL reporter (A. tumefaciens KYC55 [pJZ372][pJZ384][pJZ410]) as 13 previously described (Zhu et al., 2003). TLC plate overlays were placed in a sealed 14 container and incubated at 28°C for 16-48 hrs.

15

Derivatization of AHL samples. The formation of the methoxylamine derivatives of the
AHL samples (MC4100 expressing Ssal or Ssbl) was carried out using 0.5 ml of
methoxylamine HCL (1.2 M) sodium acetate trihydrate (200 mM) in 87.5% methanol
and 12.5% distilled H₂O followed by 1 h incubation at 37°C, then diluted with 2 ml H2O.
This diluted reaction solution was passed through a pre-activated C18 reversed solid
phase extraction cartridge. The sample was eluted with 1 ml methanol, taken to
dryness and resuspended in 30 ul of 95% solvent A 5% solvent B and analyzed as

1 positive ions by LC/MS. The methoxylated AHLs were found to elute approximately 3 2 min later than un-derivatized AHLs and had a molecular weight increase by 29 u. The 3 trimethylsilylation of the equivalent AHL samples was carried out by adding equal parts 4 of bis(trimethylsily)trifluoroacetamide and acetonitrile to a dried aliguot of the sample for 5 a total volume of 50 µl, followed by incubating at 60°C 1 h in a capped culture tube. The 6 reacted product was taken to dryness and resuspended in 30 µl of 95% solvent A 5% 7 solvent B and analyzed as positive ions using the same LC/MS/MS conditions. 8 Trimethylsilated derivatives were retained on the column 5.2 min later than un-9 derivatized AHLs and had a molecular weight increase by 72 u. 10 11 **Immunoblotting with anti-flagellar antibodies.** Samples were separated by 15% 12 SDS-PAGE at 100V 80-90 min, and transferred to the membrane (Osmonics, 13 Westborough, MA) at 30V for 40 min using a semi-dry electrotransfer system. The 14 membrane was blocked overnight at 4°C in Blotto (1x TBS-T [Tris Buffered Saline], 1% 15 Tween 20) and 5% dried milk). The polyclonal antibody was diluted 1:20,000 in 4 ml of 16 Blotto and incubated with the membrane for 45 min on a rocking shaker at room 17 temperature. The membrane was then washed three times for 5 min in 1X TBS-T. Secondary antibody solution at 1:20,000 in 4 ml of Blotto was incubated with the 18 19 membrane and rocked 45 min at room temp. The blot was rinsed three times for 5 min 20 with 1X TBS-T, followed by 2 times in 1X TBS. Chemoluminescent substrate, 21 Supersignal West Pico Chemoluminescent Substrate (Pierce, Rockford, IL) was used 22 as the detection reagent. Equal parts of the Luminol/Enhancer and Stable Peroxide

23 Buffer were combined and pooled on top of the membrane for ~5 min. Excess detection

- 1 reagent was removed by blotting on filter paper, and signal was detected by exposure to
- 2 Kodak BioMax film (Kodak).

Supplementary Table 1. Cross-regulation experiments for SsaR and SsbR in an
 AHL⁻ host¹

	β-Galactosidase Sp. Act. ²					
Expression plasmid	Fusion plasmid	No AHL	+ AHL ³			
Vector (pBBR1-MCS5)	ssbl-lacZ (pEC121)	0.7 (0.1)	0.8 (0.1)			
P _{lac} -ssaR (pEC112)	ssbl-lacZ (pEC121)	0.9 (0.1)	0.9 (0.2)			
Vector (pBBR1-MCS5)	<i>ssal-lacZ</i> (pEC116)	57.9 (0.9)	58.5 (3.6)			
P _{lac} -ssbR (pEC123)	ssa <i>l-lacZ</i> (pEC116)	50.6 (3.1)	44.3 (2.8)			

¹ All strains derived from Ti-plasmidless *A. tumefaciens* NTL4

² Specific activity in Miller Units, averages of assays in triplicate (standard deviation)

 3 2 μM 3-oxo-C16:1 Δ 11-HSL was added for P_{lac} -ssaR and 20 μM 3-OH-C14-HSL was added for P_{lac} -ssbR.

24 .

18 19

20 21

1 Supplementary Table S2. Relevant Strains and Plasmids

Bacteria/Plasmid	Relevant feature ^b	Reference
E. coli Electro-Ten	Standard alpha-complementation strain	Stratagene
Blue		
<i>E. coli</i> DH5α/λpir	Strain for propagating R6K suicide	Lab collection
	plasmids	
<i>E. coli</i> S17-1/λpir	IncP conjugal donor	(Kalogeraki and Winans,
		1997)
<i>E.coli</i> XL-1 Blue	Standard alpha-complementation strain	Lab collection
<i>E. coli</i> TOP 10 F'	Standard alpha-complementation strain,	Qiagen
	lacl ^Q	
<i>E. coli</i> MC4100	K-12 derivative, $\Delta lacZ$	(Casadaban, 1976)
A. tumefaciens	Ti plasmidless derivative, nopaline	(Zhu <i>et al.</i> , 1998)
NTL4	chromosomal background	
A. tumefaciens	Ti plasmidless derivative, octopine	(Cho <i>et al.</i> , 1997; Zhu <i>et</i>
KYC55	chromosomal background	<i>al.</i> , 2003)
Ruegeria pomeroyi	wild type	(Gonzales et al., 2003)
DSS-3		
KLH11	wild type	(Mohamed <i>et al.</i> , 2008)
KLH11-EC1	Rif ^R	This study
KLH11-EC2	ssal-lacZ, null ssal, Rif ^R , Km ^R	This study
KLH11-SK01	Δssal, Rif ^R	This study
KLH11-EC3	ss <i>bl-lacZ,</i> null ss <i>bl</i> , Rif ^R , Km ^R	This study
KLH11-SK02	$\Delta ssal \Delta ssbl Rif^R$	This study
KLH11-EC4	ssaR-lacZ, null ssaR, Rif ^R , Km ^R	This study
KLH11-EC5	<i>ssbR-lacZ,</i> null <i>ssbR</i> Rif ^R , Km ^R	This study
KLH11-JZ1	<i>ssaR-lacZ,</i> wild type <i>ssaR,</i> Rif ^R , Km ^R	This study
KLH11-JZ2	ssbR-lacZ, wild type ssbR, Rif ^R , Km ^R	This study
pCR [®] 2.1-TOPO [®]	PCR fragment cloning vector, Ap/Km ^R	Invitrogen

pBBR1-MCS5	D. companying constant Ora ^B	
	<i>P_{lac}</i> expression vector, Gm ^R	(Kovach <i>et al</i> ., 1995)
pGEM [®] T-Easy	PCR fragment cloning vector, Ap ^R	Promega
pVIK112	R6K-based <i>lacZ</i> transcriptional fusion,	(Kalogeraki and Winans,
	integration vector, Km ^R	1997)
pRA301	lacZ translational fusion vector	(Akakura and Winans,
		2002)
pJZ372	P _{tral} -lacZ translation fusion, Tet ^R	(Zhu <i>et al</i> ., 2003)
pJZ384	P _{T7∷} traR, Sp ^R	(Zhu <i>et al</i> ., 2003)
pJZ410	T7 polymerase expressing plasmid	(Zhu <i>et al</i> ., 2003)
pECH100	pBBR1-MCS5 derivative, 3 kb HinD III	This study
	fragment containing ssal and truncated	
	ssaR, Gm ^R	
pECH101	pBBR1-MCS5 derivative, 2.8 kb HinD III	This study
	fragment containing ssbl and truncated	
	ssbR, Gm ^R	
pECS102	pBBR1-MCS5 derivative, 3.2 kb Sal I	This study
	fragment containing <i>ssal</i> and <i>ssaR</i> ,	
	Gm ^R	
pEC103	pGEM [®] T-Easy derivative, carrying	This study
	truncated <i>ssal</i> fragment, Ap ^R	
pEC104	pGEM [®] T-Easy derivative, carrying	This study
	truncated <i>ssbl</i> fragment, Ap ^R	
pEC105	pGEM [®] T-Easy derivative, carrying	This study
	truncated ssaR fragment, Ap ^R	
pEC106	pGEM [®] T-Easy derivative, carrying full	This study
	length PCR-amplified ssbR fragment,	
	Ap ^R	
pEC107	pVIK112 derivative carrying truncated	This study
	ssaR gene from pEC105, Km ^R	

pEC108	pBBR1-MCS5 derivative carrying full	This study
P	length P_{lac} -ssal, from pEC111, Gm ^R	
pEC109	pBBR1-MCS5 derivation carrying full	This study
	length P_{lac} -ssbl, from pEC110, Gm ^R	This study
pEC110	pCR [®] 2.1-TOPO [®] derivative carrying full	This study
	length PCR-amplified P_{lac} -ssbl, Ap/Km ^R	
pEC111	pCR [®] 2.1-TOPO [®] derivative carrying full	This study
	_	
	length PCR-amplified <i>P_{lac}-ssal</i> , Ap/Km ^R	This study
pEC112	pBBR1-MCS5 derivative, carrying full	This study
50440	length P_{lac} -ssaR, from pEC106, Gm ^R	
pEC113	pVIK112 derivation carrying truncated	This study
	ssal gene from pEC103, Km ^R	
pEC114	pCR [®] 2.1-TOPO [®] derivative, carrying	This study
	PCR amplified <i>P</i> _{ssal} , Ap/Km ^R	
pEC115	pVIK112 derivative carrying truncated	This study
	<i>ssbl</i> gene from pEC104, Km ^R	
pEC116	pRA301 derivation, <i>P_{ssal}-lacZ</i> , Sp ^R	This study
pEC117	pGEM [®] T-Easy derivative, carrying <i>P</i> _{ssbR}	This study
	and <i>ssbR</i> Ap ^R	
pEC118	pGEM [®] T-Easy derivative, carrying <i>P</i> _{ssbl}	This study
	and ss <i>bl</i> Ap ^R	
pEC119	pGEM [®] T-Easy derivative, carrying <i>P</i> _{ssbR}	This study
	and <i>ssbR,</i> Ap ^R	
pEC120	pGEM [®] T-Easy derivative, carrying full	This study
	length <i>P_{lac}-ssbR</i> , Ap ^R	
pEC121	pRA301 derivative, <i>P_{ssbl}-lacZ</i> , Sp/Sm ^R	This study
pEC122	pVIK112 derivative carrying truncated	This study
	<i>ssbR</i> from pEC119, Km ^R	
pEC123	pBBR1-MCS5 derivative, carrying full	This study
	length <i>P_{lac}-ssbR</i> , from pEC120, Gm ^R	
		<u> </u>

	pRA301 derivative, <i>P_{ssa}-lacZ</i> , 5'	
pEC124	promoter deletion, 79 bp with <i>lux</i> type	This study
	box, Sp ^R	
pEC127	pRA301 derivative, <i>P_{ssal}-lacZ</i> , 5'	This study
	promoter deletion, 63 bp fragment lacks	
	<i>lux</i> type box, Sp ^R	
pJZ001	pVIK112 derivative, <i>ssaR</i> gene with 5'	This study
	truncation, to retain wt <i>ssaR</i> , Km ^R	
pJZ002	pVIK112 derivative, <i>ssbR</i> gene with 5'	This study
	truncation, to retain wt ssbR, Km ^R	
	n=Gentamycin, Km=Kanamycin, Rif=Rifam	npcin, Sp=Spectinomycin.
Tc=Tetracycline		

Supplementary Table S3. Primers used in this study.

Primer name	Sequence ^a (5'-3')	Restriction Enzyme
ssal D1	ACTAGTCTATGGTGACGACTGGAAG	Spel
ssal D2	GAATTCGTCAGTCAGTCAGTTTCCCCGTAATATTGGCTT	NA
ssal D3	TGACTGACTGACGAATTCAGGCTGGCGAACTCAAGCCTG	NA
ssal D4	<u>GCATGC</u> GACTACATTGTCGAGCTG	Sphl
ssbl D1	<u>ACTAGT</u> GCAATCAGGGTTATTCGATC	Spel
ssbl D2	GAATTCGTCAGTCAGTCACAACATGATTGTTCCCCTTGT	NA
ssbl D3	TGACTGACTGACGAATTCGCCTGACCTTGGTGGAAATTG	NA
ssbl D4	<u>GCATGC</u> GATACGGTGAATGGTCGTTGC	Sphl
ssal 1	cg <u>gGAATTC</u> ATGTTCGAACTGCGCGCTCGGG	EcoRI
ssal 2	gcc <u>GGTACC</u> ATCGCAGGGACCTTGCCCATC	Kpnl
ssal 3	ggc <u>CTCGAG</u> C TGA AAC <i>AGGAAA</i> CAGCT ATG ATTTTGGTAGTTGATG	Xhol
ssal 4	ggc <u>GAATTC</u> GGG TCA GGCCTCATGAGCAAAAGC	EcoRI
ssaR 1	cgc <u>GAATTC</u> TCAGCACCCTCCCCGAACAGG	EcoRI
ssaR 2	cgc <u>GGTACC</u> CGGCCCATTGCAAAATCTC	Kpnl
ssaR 3	gggCTCGAGGTGAAACAGGAAACAGCTATGGATATTGTTGATCTCAGC	
ssaR 4	<u>gggGAATTC</u> GGC TTA ACCTGGGTAGATTAGCCC	EcoRI
ssbl 1	cgc <u>GAATTC</u> GGATGAGCTGCATAAATTTCCGG	EcoRI
ssbl 2	gcc <u>GGTACC</u> AACGGAAATCCGGTCTCGCCCG)	Kpnl
ssbl 3	ggc <u>CTCGAG</u> C TGA AACAGGAAACAGCT ATG TTGCGTTATTTATATGCG	
ssbl 4	ggc <u>GAATTC</u> GGG TCA GGCGGAAAGCGCAAACCG	EcoRI
ssbR 1	ggc <u>GAATTC</u> TCGGTTCAGCTGCGCGATCGG	EcoRI
ssbR 2	cgc <u>GGTACC</u> TTCCGGTTGCCGGTTCTGGGC	Kpnl
ssbR 3	gcg <u>CTCGAG</u> G TGA AACAGGAAAcagctATGAGGCTTGCGCGCCCGCG	Xhol
ssbR 4	<u>gggGAATTC</u> GGC TTA AACGACTATTAATCCTCTGC	EcoRI
fliC 1	cgc <u>gaattc</u> AAGTCGGTCAACATGAACCTG	EcoRI
fliC 2	gcc <u>ggtacc</u> GTTGTCACGATCAAGCGAGGA	Kpnl
fliCRT1	CGCAGAACCTGTCGACCGGT	NA
fliCRT2	GGTATCGCCTGCGGCCAATGT	NA

flaART1	GCACCGATGCATATGCGCAAGCT	NA
flaART2	TGAGCGATTGCAGCCGGGTT	NA
-	GACGCCTATCGCGGCCGT	NA
rpoDRT1		
rpoDRT2	GCCGACCTGCGCCATATCGT	NA
ssal P1	cc <u>gGAATTC</u> TGCACTAACCACACCTCAGGCCG	EcoRI
ssal P2	gc <u>gGAATTC</u> TACGGGAAACCCCCAATAGATTCG	EcoRI
ssal P3	<u>gggGAATTC</u> TAGATTCGCTGTGAAATCCGAG	EcoRI
ssal P4	cc <u>gCTGCAG</u> AAT CAT GTTAACCCCCTTCG	Pstl
ssbl P1	cggGAATTCTATAGCCGGGCACAGGTGGCGC	EcoRI
ssbl P2	ccc <u>CTGCAG</u> CAA CAT GATTGTTCCCCTTGTCGT	Pstl
aP1	CGGCACCATTCATGGCCATGT	NA
aP2	CCATTCGTCCCGACTGCAGC	NA
aP3	ATGATTTTGGTAGTTGATG	NA
aP4	GTCGCATAGGACACCGAGTT	NA
bP1	CCAATATGGCTTCACGACCT	NA
bP2	AATAACCCTGATTGCCCACA	NA
bP3	GGTAAACGAAGATGGCGAAG	NA
bP4	GAGCCGATCATGCGATAAAT	NA
ssaRintactF	<u>GAATTC</u> CAAGGCCTGCATCTGATCG	EcoRI
ssaRintactR	<u>GGTACC</u> TTAACCTGGGTAGATTAGCCC	Kpnl
ssbRintactF	GAATTCTATCACCGCATTGATCCGG	EcoRI
ssbRintactR	GGTACC TTA AACGACTATTAATCCTCTGCTG	Kpnl
RtaF	AAGTACTTGACGAAATGTTCGAACTG	NĂ
RtaR	GGTCGATCACGGTAATGATGTCTTC	NA
		1.1/ \

^a Engineered restriction sequences are underlined. Complementary sequences for PCR-SOEing are shown in bold and

are also underlined. Start and stop codons are in bold. *E. coli lacZ* ribosomal binding sites are in italics and bold.

Protection nucleotides for restriction enzyme are shown in lower case. *NA*= not applied.

1 Supplementary References

- 2
- Akakura, R., and Winans, S.C. (2002) Mutations in th *occQ* operator that decrease
 OccR-induced DNA bending do not cause constitutive promoter activity. *J Biol Chem* 277: 15883-15780.
- Casadaban, M.J. (1976) Transposition and fusion of *lac* genes to selected promoters in
 Escherichia coli using bacteriophase lambda and Mu. *J Mol Bio* 104: 541-555.
- 8 Cho, K., Fuqua, C., and Winans, S.C. (1997) Transcriptiuona regulation and locations of
 9 the Agrobacterium tumefaciens genes required for complete catabolism of octopine.
 10 J bacteriol 179: 1-8.
- Gonzales, J.Z., Covert, J.S., Whitman, W.B., Henriksen, J.R., Mayer, F., Scharf, F., et al.
 (2003) Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov.,
- dimethylsulfoniopropionate-demethylating bacteria from marine environments. *Intl J* Syst Evol Microbiol 53: 1261-1269.
- Kalogeraki, V.S., and Winans, S.C. (1997) Suicide plasmids containing promoterless
 reporter genes can simultaneously disrupt and create fusions to target genes of
 diverse bacteria. *Gene* 188: 69-75.
- Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop II, R.M., and
 Peterson, K.M. (1995) Four new derivatives of the broad host range cloning vector
 pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* 166: 175-176.
- Mohamed, N.M., Cicirelli, E.M., Kan, J., Chen, F., Fuqua, C., and Hill, R.T. (2008)
 Diversity and quorum-sensing signal production of Proteobacteria associated with
 marine sponges. *Environ Microbiol* 10: 75-86.
- Zhu, J., Beaber, J.W., More, M.I., Fuqua, C., Eberhard, A., and Winans, S.C. (1998)
 Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity
 of the TraR protein of *Agrobacterium tumefaciens*. *J bacteriol* 180: 5398-5405.
- Zhu, J., Chai, Y., Zhong, Z., Li, S., and Winans, S.C. (2003) *Agrobacterium* bioassay
 strain for ultrasensitive detection of *N*-acylhomoserine lactone-type quorum-sensing
 molecules: detection of autoinducers in *Mesorhizobium huakuii*. *Appl Environ Microbiol* **69**: 6949-6953.

SUPPLEMENTARY FIGURE LEGENDS

1

2

3 Figure S1. Comparative analysis of AHLs. The relative amounts of the known AHLs 4 in (A and C) KLH11 derivatives and (B) E. coli MC4100 are shown in bar graphs, with 5 the peak label above each set of bars. The plot shows the ratio of the area of the 6 transition for each AHL to m/z 102 to the same transition for the internal standard d3-7 C6-HSL. Analysis of AHL samples was performed in positive-ion mode with the third 8 guadrupole set to monitor m/z 102.3 as described in Experimental Procedures. The 9 relative amounts of the known AHLs in each strain are shown in the bar graph, and the 10 data were analyzed as in Figures 2 and 3. (e), (f), (g), and (h) referring to detection of 11 3OH-C12-HSL, 3OH-C13-HSL/3OH-C14:1-HSL, 3OH-C14-HSL/3oxoC14-HSL, and 12 30xoC16-HSL/3OHC16:1-HSL respectively. In panels B and C, the Ssal y axis is on the 13 left and the Ssbl y axis (with an asterisk) is on the right.

14

15 Figure S2. Gene maps of KLH11 ssaR/ssal and ssbR/ssbl loci. Arrows represent 16 genes. A) SsaR (ZP 05123091) and Ssal (ZP 05123801) and are predicted to be 233 and 284 amino acids, respectively; Genbank accession numbers are ZP 05124568 for 17 18 transglycosylase and ZP 05123238 for trigger factor. Primers used to test whether 19 ssaRI are in the same operon are indicated as P1, P2, P3 and P4 (see Table S3, aP1, 20 aP2, aP3, aP4). Lanes 1-4 were PCR results using primers P1 and P2, lanes 5-8 used 21 primers P3 and P4, and lanes 9-12 used primers P1 and P4. Lanes 1, 5 and 9 used 22 cDNA as template, lanes 2, 6 and 10 used genomic DNA as template, lanes 3, 7 and 10 23 used RNA as templates. Lanes 4, 8 and 12 were negative controls the primer sets. B)

SsbR (ZP_05123460) and SsbI (ZP_05121795) are predicted to be 239 and 212 amino
acids. ; Genbank accession numbers are ZP_05124465 for crotonyl CoA reductase and
ZP_05122236 for helicase. Primers used to test whether ssbRI are in the same operon
are indicated as P1, P2, P3 and P4 (see Table S3, primers bP1, bP2, bP3, bP4). The
lanes are organized the same as in panel A.

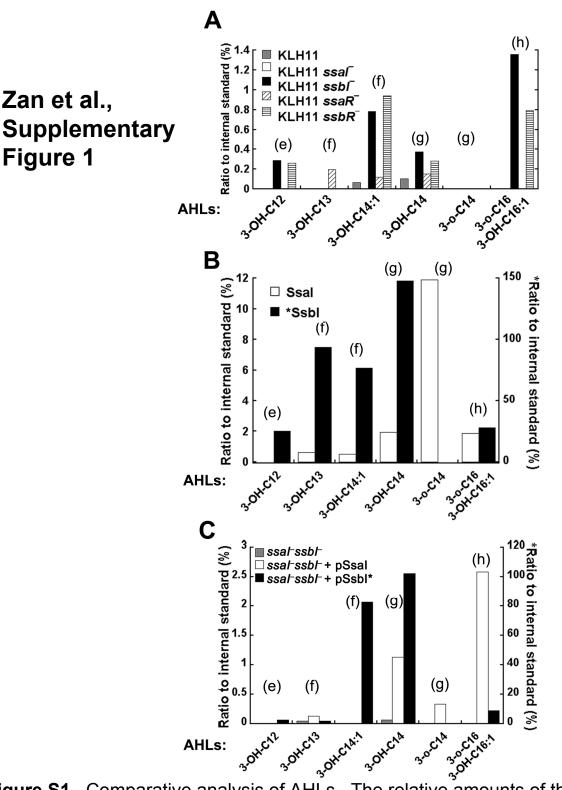

6

Figure S3. Sequence alignment of selected AHL synthases. The grey shaded
regions are the most conserved sequence blocks within the AHL synthase family.
Residues are colored red to indicate acidic or hydrophilic, blue for basic, and orange for
other. Shaded residues are absolutely conserved and the boxed residues are the most
similar regions within the family.

12

13 Figure S4. Mass spectrometric analysis of plasmid-expressed SscI-directed AHLs 14 from E. coli. Cultures of E. coli MC4100 expressing plasmid-borne sscl were extracted 15 and subjected to reverse-phase chromatographic separation prior to tandem MS 16 analysis using the precursor ion-scanning mode (transitions were monitored for 17 precursor [M + H]+ -> m/z 102) for (A) MC4100 + Sscl. The peaks in the 18 chromatograms are labeled with lettering and the AHLs are noted. (B) The relative 19 amounts of the known AHLs in E. coli MC4100 derivatives harboring Plac expression 20 plasmids with Ssal, Ssbl, and Sscl are shown in bar graphs, with the peak label above 21 each set of bars. The plot shows the ratio of the area of the transition for each AHL to 22 m/z 102 to the same transition for the internal standard D3-C6-HSL. The SsbI/SscI y 23 axis is on the left, and the Ssal y axis is on the right.

2	Figure S5. Activation of ssal in response to synthetic AHLs (A) Activation of ssal-
3	lacZ fusion with synthetic long chain AHLs. KLH11 ssal- carrying the integrated ssal-
4	<i>lacZ</i> fusion. The final concentration of 3-OH-C14 used was 20 μ M and the other 3
5	AHLs were 2 μ M (B) Dose responsive activation of <i>ssal-lacZ</i> by SsaR (<i>P_{lac}-ssaR</i>) in <i>A</i> .
6	tumefaciens NTL4 background. Different concentrations of the crude organic extract of
7	KLH11 cultures (%, v/v) and 3-oxo-C16:1 ${\rm \Delta}11$ (nM) were added at the time of culture
8	inoculation. Miller Units are averages of assays performed in triplicate and error bars
9	are standard deviations.
10	
11	Figure S6. Growth curves of KLH11 and different QS mutants. Average OD600 of 5
12	ml cultures in MB2216. Cultures were grown in triplicate.
13	
14	Figure S7. Flagellar staining of KLH11 quorum-sensing mutants. Stained cells
15	from late stage cultures were viewed under phase contrast microscopy with 100X lens.
16	Wild type (EC1), ssal- (EC2), ssbl- (EC3), ssaR- (EC4), and ssbR- (EC5). Red arrows
17	indicate stained flagella.

Figure S1. Comparative analysis of AHLs. The relative amounts of the known AHLs in (A and C) KLH11 derivatives and (B) *E. coli* MC4100 are shown in bar graphs, with the peak label above each set of bars. The plot shows the ratio of the area of the transition for each AHL to m/z 102 to the same transition for the internal standard d3-C6-HSL. Analysis of AHL samples was performed in positive-ion mode with the third quadrupole set to monitor m/z 102.3 as described in Experimental Procedures. The relative amounts of the known AHLs in each strain are shown in the bar graph, and the data were analyzed as in Figures 2 and 3. (e), (f), (g), and (h) referring to detection of 3OH-C12-HSL, 3OH-C13-HSL/3OH-C14:1-HSL, 3OH-C14-HSL/30xoC14-HSL, and 30xoC16-HSL/3OHC16:1-HSL respectively. In panels B and C, the Ssal y axis is on the left and the Ssbl y axis (with an asterisk) is on the right.

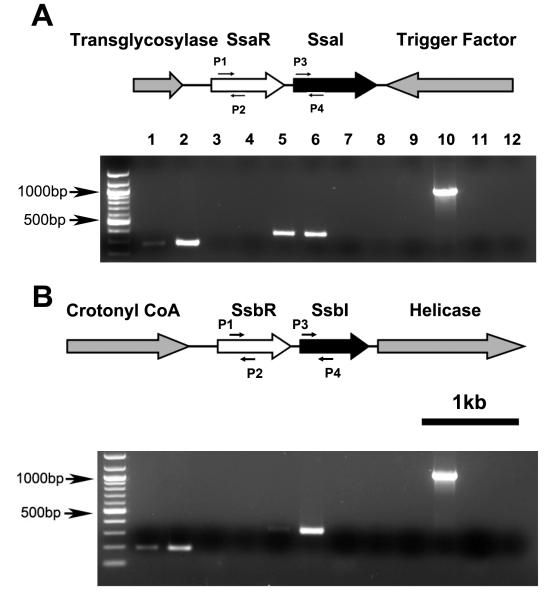


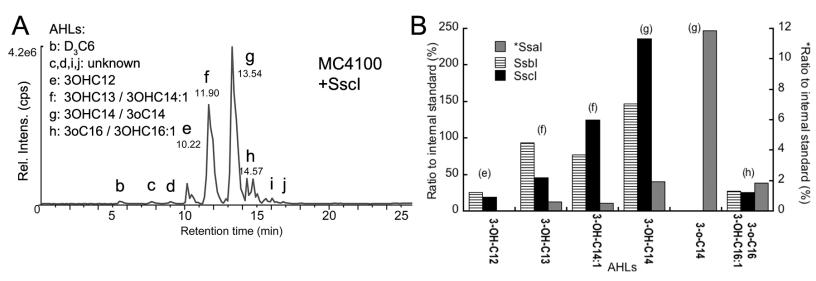
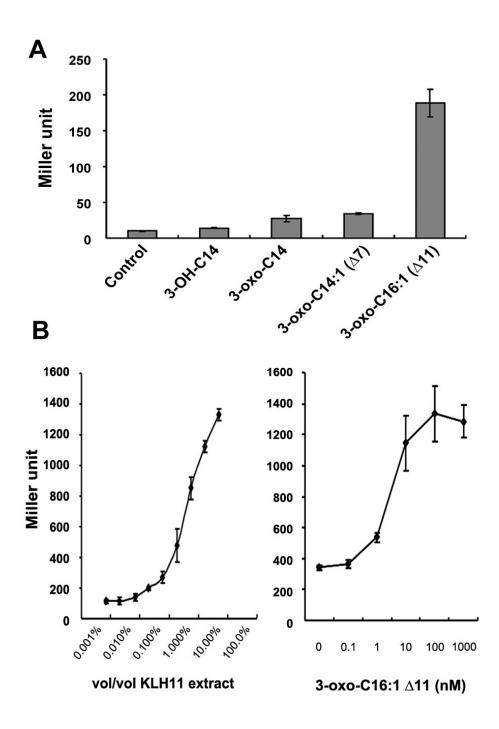
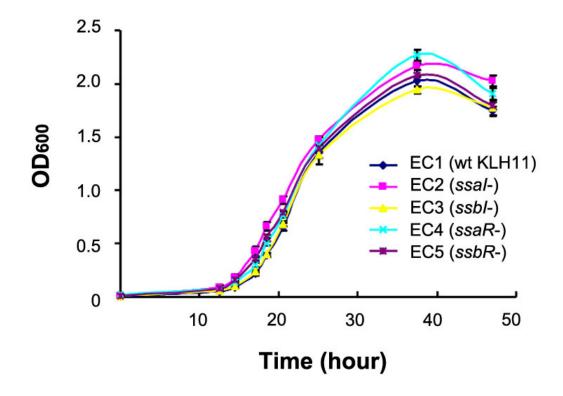
Figure S2. Gene maps of KLH11 ssaR/ssal and ssbR/ssbl loci. Arrows represent genes.

A) SsaR (ZP_05123091) and Ssal (ZP_05123801) and are predicted to be 233 and 284 amino acids, respectively; Genbank accession numbers are ZP_05124568 for transglycosylase and ZP_05123238 for trigger factor. Primers used to test whether *ssaRI* are in the same operon are indicated as P1, P2, P3 and P4 (see Table S3, aP1, aP2, aP3, aP4). Lanes 1-4 were PCR results using primers P1 and P2, lanes 5-8 used primers P3 and P4, and lanes 9-12 used primers P1 and P4. Lanes 1, 5 and 9 used cDNA as template, lanes 2, 6 and 10 used genomic DNA as template, lanes 3, 7 and 10 used RNA as templates. Lanes 4, 8 and 12 were negative controls the primer sets.

B) SsbR (ZP_05123460) SsbI (ZP_05121795) are predicted to be 239 and 212 amino acids. ; Genbank accession numbers are ZP_05124465 for crotonyl CoA reductase and ZP_05122236 for helicase. Primers used to test whether *ssbRI* are in the same operon are indicated as P1, P2, P3 and P4 (see Table S3, primers bP1, bP2, bP3, bP4). The lanes are organized the same as in panel A.

	1 •	• •	•	•	•	•	•	•	•
LuxI	MTIMIKKSDFLAIPSEEYKG	ILSL <mark>R</mark> YQV <mark>F</mark> KQRLE <mark>W</mark> DL	VVENNLES	DEYDNSNAEYI	YACDDTEN	<mark>/SGCWR</mark> LLPTTGI	OY <mark>ML</mark> KSVFPEL	LGQQSA PKDI	PNIV <mark>E</mark> LSRF
EsaI	MLELFDVSYEELQTTRSEE	LYKL <mark>R</mark> KKT <mark>F</mark> SDRLG <mark>W</mark> EV	ICSQGMESI	DEF <mark>D</mark> GPGTRYI	LGICEGEI	L <mark>VC</mark> SVRFTSLDRI	NMITHTFQHC	FSDVTLPA	AYGT <mark>E</mark> SS <mark>R</mark> F
LasI	MIVQIGRREEFDKKLLGE	MHKLRAQV <mark>F</mark> KERKG <mark>W</mark> DV	SVIDEMEII	OGY <mark>D</mark> ALSPYYM	LIQEDTPEAQ	FGCWRILDTTGI	YMLKNTFPEL	LHGKEA – – PCSI	PHIW <mark>E</mark> LS <mark>R</mark> F
RhlI	MIELLSESLEGLSAAMIAE	LGRYRHQV <mark>F</mark> IEKLG <mark>W</mark> DV	VSTSRVRDQEF	DQ <mark>FD</mark> HPQTRYI	VAMSRQGI	ICGCARLLPTTD2	AY <mark>LL</mark> KDVFAYL	CSETPPSDI	PSVW <mark>E</mark> LS <mark>R</mark> Y
SsaI	MILVVDGLNRHLFTEVLDE	MFELRARV <mark>F</mark> GGRLG <mark>W</mark> DV	NIEDGKEII	OQ <mark>FD</mark> HLDPAYV	IGLDDEGNV	<mark>/SAAVR</mark> ALQTTGI	PHMLSDVFSDI	LCGEAPMRSA	ATMW <mark>E</mark> ST <mark>R</mark> F
SsbI	MLRYLYADELHKFPVLAEG	MFRDRADQ <mark>F</mark> KTRLG <mark>W</mark> DV	KVNEDGEERI	QY <mark>DDLNPLYV</mark>	IWEEADGS H	I <mark>GGSMR</mark> VLPTTGI	PVMVNDIFGHL	TGGSPICSI	PRIW <mark>E</mark> VT <mark>R</mark> F
SscI	MLRYVFADELMKYPSLAKG	MFRDRADQ <mark>F</mark> KTRLG <mark>W</mark> DV	HVNAEGEERI	QYDQLNPLYV	IWEESDGS H	IGGSMR ILPTTGI	VMVNEVFGHL	MGGKLISSI	PRIW <mark>E</mark> VTRF
	102 •	• •	•	•	•	•	•	• •	•
LuxI	AVGKNSSKINNSASEIT	MKLFEAIYKHAVSQGIT	EYVTVTSTAIE	RFLKRIKVPCH	RIGDKEIHVL	GDTKSVVLSMPI	IEQFKKAVLN		
EsaI	FVDKARARALLGEHYPIS	QVLFLAMVNWAQNNAYG	NIYTIVSRAMLE	KILTRSGWQIK	VIKEAFLTH	EKERIYLLTLPA	GODKQQLGGD	VVSRTGCPPVAV	TTWPLTLPV
LasI	AINSGQKGSLGFSDCTLE	AMRALARYSLQNDIQ	TLVTVTTVGVEI	(MMIRAGLDVS)	RFGPHLKI	GIERAVALRIELI	IAKTQIALYGG	VLVEQRLAVS	
RhlI	AASAADDPQLAM	K-IFWSSLQCAWYLGAS	SVVAVTTTAME	RYFVRNGVILQ	RLGPPQKVE	KGETLVAISFPA	QERGLEMLLR	YHPEWLQGVPL	SMAV
SsaI	CVDTQRLTRGKEKNSVSYAT	CELMIGSLEYCRNAGIE	DIITVIDPVMNI	RVLKRSNCAPY	DYVGETVPMG	KVPAMAALLDCSI	ERISGLREFA	GIHHDVFVEEEG	QALEMFEAKKA(265)
SsbI	CLSRTASAHTA	GAIMLSGGEMMEGFGLT	HIAGVFDARMII	RIYRMIGSSPV	VLGAEGTGRDI	RISVGLWPYSADI	CNRVAARAGI	PRELSRLWFNTA	AFGN-GMRH-RFALSA
SscI	CLSRNASPHTA	GAIMLSGGELMEKYKLT	HIAG <mark>V</mark> FDERMII	RIYRMIGSSPQ	VLGSEGAGRSE	RISVGLWPYSSDI	CDRVAERAGV	SRELSRLWLNIS	SLMRYGQDHPKFQRTA

Figure S3. Sequence alignment of selected AHL synthases. The grey shaded regions are the most conserved sequence blocks within the AHL synthase family. Residues are colored red to indicate acidic or hydrophilic, blue for basic, and orange for other. Shaded residues are absolutely conserved and the boxed residues are the most similar regions within the family.

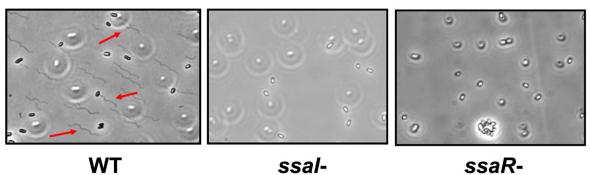

Figure S4. Mass spectrometric analysis of plasmid-expressed Sscldirected AHLs from *E. coli*. Cultures of *E. coli* MC4100 expressing plasmidborne *sscl* were extracted and subjected to reverse-phase chromatographic separation prior to tandem MS analysis using the precursor ion-scanning mode (transitions were monitored for precursor [M + H]+ -> m/z 102) for (A) MC4100 + Sscl. The peaks in the chromatograms are labeled with lettering and the AHLs are noted. (B) The relative amounts of the known AHLs in *E. coli* MC4100 derivatives harboring P_{lac} expression plasmids with Ssal, Ssbl, and Sscl are shown in bar graphs, with the peak label above each set of bars. The plot shows the ratio of the area of the transition for each AHL to m/z 102 to the same transition for the internal standard D3-C6-HSL. The Ssbl/Sscl y axis is on the left, and the Ssal y axis is on the right.

Figure S5. Activation of *ssal* in response to synthetic AHLs (A) Activation of *ssal-lacZ* fusion with synthetic long chain AHLs. KLH11 *ssal-* carrying the integrated *ssal-lacZ* fusion. The final concentration of 3-OH-C14 used was 20 μ M and the other 3 AHLs were 2 μ M (B) Dose responsive activation of *ssal-lacZ* by SsaR (P_{lac} -*ssaR*) in *A. tumefaciens* NTL4 background. Different concentrations of the crude organic extract of KLH11 cultures (%, v/v) and 3-oxo-C16:1 Δ 11 (nM) were added at the time of culture inoculation. Miller Units are averages of assays performed in triplicate and error bars are standard deviations.

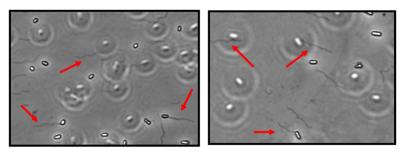


Figure S6. Growth curves of KLH11 and different QS mutants. Average OD_{600} of 5 ml cultures in MB2216. Cultures were grown in triplicate.

ssbl-

Figure S7. Flagellar staining of KLH11 quorum-sensing mutants. Stained cells from late stage cultures were viewed under phase contrast microscopy with 100X lens. Wild type (EC1), ssal- (EC2), ssbl- (EC3), ssaR- (EC4), and ssbR- (EC5). Red arrows indicate stained flagella.