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1 Topological analysis

Metabolic networks can be represented as (semi)directed or undirected networks. Directed net-

works allows us to distinguish between reactants and products and between reversible and irre-

versible reactions. However, an undirected version of the metabolic network of the organisms

is often reconstructed in order to compute the degree distribution of metabolites and reactions

(Figure S 1).

For metabolites, we show the cumulative probability distribution function (P (k′M ≥ kM)),

whereas for reactions we compute the direct probability distribution function (P (kR)). Metabo-

lites display characteristic scale-free degree distributions P (k) ∼ k−γ with exponents that are

rather similar. To check the validity of the null model that the observed empirical metabolite

degree distributions have been generated by a power law, we perform goodness of fit tests. We

compute the Kolmogorov statistic

D = max
k≥kmin

∣∣∣∣∣Pc(k)−
∑
k′=k k

′−γ∑
k′=kmin

k′−γ

∣∣∣∣∣ , (1)

where kmin is the minimum degree beyond which we expect the power law to hold and Pc(k)

is the empirical complementary cumulative degree distribution of metabolites. The exponent γ

and the minimum degree kmin are computed using maximum likelihood methods as described

in Ref. (1), resulting in kmin = 2, γ = 2.44 ± 0.04, D = 0.017 for the E. coli metabolism,

kmin = 3, γ = 2.20±0.09,D = 0.039 for S. aureus, and kmin = 2, γ = 2.3±0.1,D = 0.070 for

M. pneumoniae. According to the Kolmogorov Smirnov (KS) test, the variable
√
ND follows

the Kolmogorov distribution PK(K), of which 95% confidence level is at K95% = 1.35. Given

the size of our samples, we obtain
√
ND = 0.63 < 1.35 for E. coli,

√
ND = 0.53 < 1.35

for S. aureus, and
√
ND = 0.83 << 1.35 for M. pneumoniae. This implies that the null

model cannot be ruled out and, consequently, that power laws are a plausible explanation of

these metabolite degree distributions. Reactions show a peaked distribution centered at the

correspondent average degree of each network. In this case, all the degree distributions have a

maximum at the value of 4. Strong similarities in both distributions are evidenced for the three
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analyzed species.
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Figure S 1: Topological analysis of M. pneumoniae (blue), S. aureus (red) and E. coli (green).

a). Cumulative probability distribution function (CPDF) of metabolite degrees. b). Probability

distribution function (PDF) of reaction degrees.

2 Implementation of cascades

Failure cascades in metabolic networks triggered by specific reactions propagate by turning

further reactions non-operative. We follow the algorithm in Ref. (2). When a reaction fails, it

affects its metabolites such that some may become inviable, in the sense that their concentrations

cannot be maintained anymore at stationary values and accumulate or deplete, which in turn

affects other reactions. The algorithm that propagates the cascade follows the sequence:

1. Choose the triggering reaction and remove all the links that it shares with its metabolites.

2. Check if the affected metabolites remain viable, kin 6= 0 and kout 6= 0 (except metabolites

exchanged with the environment, which must have just one of the degrees different from

zero). If the metabolite is inviable, remove all the edges that it shares with other reactions,

that become non-operative.

3. Remove all reactions that became non-operative.
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4. Repeat the last two steps until all the reactions that remain are operative.

Reversible reactions are handled as in Ref. (2). They are decoupled in two half-nodes,

the forward and the reverse sense of the reaction. A cascade propagating to a metabolite of a

reversible reaction fixes it in the forward or reverse direction depending on whether the lone

incoming or outgoing link left to the affected metabolite is connected to the forward or reverse

half of the reaction. In all cases, when any metabolite of a reversible reaction has this reaction

as the lone producing and consuming it, the reaction must be removed to satisfy the viability

criterion.

3 Null models of randomized metabolic networks

Null models are constructed by picking at random a pair of links of the network and swapping

the end of the links. Nevertheless, there are some aspects that must be considered. The number

of in, out and bidirectional links must be preserved, as well as the fact that metabolites must

be connected to reactions and reactions with metabolites. Also, there must be neither self-links

nor repeated links. The number of potentially realized moves is n2
links (where nlinks is the sum

of in, out and bidirectional links) and 100 realizations of each network are used for statistical

analysis.

4 Metabolic effects of the failure of individual reactions

4.1 General results

In Figure S 2 we plot the damage distributions obtained from single reaction failures for the

three considered species. While some do not propagate at all, there are several reactions whose

associated damages are very large and trigger cascades which are potentially lethal. Reactions

prone to induce vulnerability are listed in Table S 1, together with their associated damages and

corresponding values of the predictor index (See main text).
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Reaction Damage Predictor

9 32 1

10 32 10

138 14 3

145 14 4

141 13 4

178 13 1

187 13 1

1 11 19

77 9 4

142 9 10

55 9 4

165 9 5

105 8 3

73 6 2

160 6 3

161 6 1

Table S 1: Reactions corresponding

to largest damages and associated pre-

dictor values.
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Figure S 2: Probabilities of damage spreading

from single reacions. a) M. pneumoniae (blue).

b) S. aureus (red). c) E. coli (green). Notice the

large number of reactions which do not propa-

gate when they are removed (d = 1).
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4.2 Motifs triggering large cascades

Cascades propagate through motifs which display characteristic structures shown in Figure S

3. Note that a distinction must be made between motifs which are potential triggers and those

that are real triggers with d > 1. This distinction comes from the fact that potential triggers

involve necessarily reversible reactions. The latter sense might be driven after the removal of

the initial reaction (see above for the handling of reversible reactions). If such a process renders

the reversible reaction not viable, then the cascade is going to spread and the damage is going

to be greater than 1. Otherwise, if the reaction is left viable, the cascade is going to stop in

that step and thus the damage is going to have a value of 1. In any case, both real and potential

triggers are accounted for in the expression of the predictor (see main text).

An example of the application of Eq. 1 of the main text is shown in Fig 4.

5 Metabolic effects of knocking out gene co-expression clus-

ters

5.1 Hierarchical clustering

This method is used in Ref. (3). It is based on transforming the correlation between genes into

average distances between them. Therefore, clusters of genes are genes which are near to each

other.

5.2 Infomap

This method is based on the algorithm of Ref. (4) called Infomap. It detects clusters of genes

depending on how information flows through the network. Clusters are thus groups of nodes

where information flows easily and quickly.
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Figure S 3: Motifs of cascade propagation after failure of individual reactions. Cases a-j are

going to result into cascades with d larger than 1, while cases k-p correspond to potential trans-

mitters in the sense that they may or may not spread the cascade.

5.3 Recursive percolation

Recursive Percolation is a method that identifies clusters depending on the correlation intensi-

ties. The higher the correlation, the more probable is that two nodes belong to the same cluster.

This method proceeds by finding the percolation threshold of the selected set of links iteratively

until a criterium is satisfied (Figure S 5). In this case, the used criterium was that the distribution

of sizes were similar to the corresponding ones for hierarchical clustering and Infomap (Figure

S 6).
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Figure S 4: Examples of Eq. 1 of main text to several cases. Triggering reactions are col-

ored yellow, whereas metabolites which spread the cascade are colored red. For clarity, the

contribution of each metabolite to the value of Pr is also given.

5.4 General results

The distribution of the size of the clusters is given in Figure S 6 for the three considered meth-

ods. Although they all follow a similar power-law distribution, the composition of the clusters

is not equal. Recursive Percolation is the method where the probability of finding large clusters

is lower, whereas Infomap has the largest probability.

To check if the composition of the clusters is relevant, we compared the obtained damages

with a null model. In this case, the null model consists in randomizing the metabolic genes of

the clusters, maintaining constant the number of metabolic genes in each cluster. The regulation
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Figure S 5: Example of application of the

method Recursive Percolation to a matrix

of correlated data. The first step leads

to 10 clusters. Among these 10 clusters,

the largest are fragmented, leading to more

clusters. This is done until the distribution

of sizes is similar to that found in the other

methods.
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Figure S 6: Size distribution of clusters in

terms of their cumulative probability distri-

butions. a) Hierarchical clustering (blue).

b) Infomap (red). c) Recursive Percolation

(green). They all show similar power-law

cluster size distributions.

of the reactions is neither modified. The number of trials is n2
genes (where ngenes is the number of

metabolic genes) for each realization and we performed 100 realizations for statistical analysis.

6 Data

Along with this file, we also provide a .xls file as supporting information containing the edge

list of M. pneumoniae, all the reactions with their associated damages, and the cluster where

each gene belongs to for the three different methods.
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Figure S 7: Damage distributions as a function of the number of genes and reaction failures,

similar to Fig. 4 in the main text, but now randomizing the specific genetic contents of each

cluster while maintaining the total number of metabolic genes in each cluster.

References

[1] Clauset, A., Shalizi, C. R., Newman, M. E. J. Power-law distributions in empirical data.

SIAM Review 51, 661–703 (2009).

11



Effects of structural stress in metabolism O Güell, F Sagués and MA Serrano
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