Supplemental materials:

The periplasmic nitrate reductase Nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in *Magnetospirillum gryphiswaldense*

Running title: Denitrification and magnetite biomineralization

Yingjie Li¹, Emanuel Katzmann¹, Sarah Borg¹, and Dirk Schüler^{1#}

Ludwig-Maximilians-Universität München, Department Biologie I, Mikrobiologie, Großhaderner Str. 4, 82152 Planegg-Martinsried, Germany¹

#Corresponding author: Dirk Schüler

e-mail: <u>dirk.schueler@lmu.de</u>

Tel: +4989218074502

Fax: +4989218074515

Fig. S1. Scheme for the construction of the large complementation plasmid pLYJ80 (about 11 kb) for Δnap .

Fig. S2. Nitrate utilization in WT with an initial nitrate concentration of 4 mM (nitrate medium).

Fig. S3. (A) Growth (OD_{565 nm}) and magnetic response (Cmag) of $\Delta nap+pLYJ80$ and $\Delta norCB+pLYJ75$ under anaerobic conditions. $\Delta nap+pLYJ80$ and $\Delta norCB+pLYJ75$ represented mutant cells harboring their respective WT alleles. (B) Gas production assay in WT, $\Delta nosZ$ and $\Delta nosZ+pLYJ76$ in semisolid agar. $\Delta nosZ+pLYJ76$ represented *nosZ* mutant cell harboring a WT *nosZ* allele. Cells grew as bands (white arrows), and bubbles (black arrows) were detected in WT and complemented *nosZ* strain cultures but not in $\Delta nosZ$ mutant.

Fig. S4. Schematic representation of steps employed for the interruption of *napA* (*napA::kanR*) in MSR-1. The insertion mutant showed WT-like growth and Cmag values.Under microaerobic and anaerobic conditions, it still consumed nitrate like the WT (data not shown).

Strain	Important feature (s)	Source or reference	
<i>E. coli</i> strain DH5α	F' Φ 80d <i>lacZ</i> Δ M15 Δ (<i>lacZYA-argF</i>) <i>U169 deoR</i> recA1 endA1 hsdR17 (r _k -, m _k +) phoA supE44 λ - thi-1 gyrA96 relA1	Invitrogen	
E. coli strain BW29427	dap auxotroph derivative of E. coli strain B2155	K. Datsenko and B. L. Wanner, unpublished	
MSR-1 WT	Wild type R3/S1, but Rif ^r , Sm ^r	(8)	
$\Delta nirS\Delta norCB$	R3/S1 $\Delta nirS\Delta norCB$	Y. Li and D. Schüler, unpublished data	
napA::kanR	R3/S1 nap::pLYJ27	This study	
Δnap -up	R3/S1 nap::pLYJ85	This study	
Δnap -up-down	R3/S1 nap::pLYJ85::pLYJ92	This study	
Δnap	R3/S1 Δnap	This study	
$\Delta norCB$	R3/S1 $\Delta norCB$	This study	
$\Delta nosZ$	R3/S1 $\Delta nosZ$	This study	

Table S1. Bacterial strains used in this work

Plasmid	Important feature (s)	Source or reference
pJTE1.2/blunt	Amp ^r , <i>eco47IR</i> (lethal restriction enzyme gene), <i>rep</i> (pMB-1)	Fermentas
pCM184	Broad-host-range allelic exchange vector, Amp ^r , Km ^r , Tc ^r	(5)
pBBR1MCS-2	Km ^r , mobilizable broad-host-range vector	(3)
pK19mobGII	-	(2)
pAL01	Km ^r , pK19mobGII vector (Km ^r , pMB-1 replicon, <i>gusA</i> , <i>lacZ</i>) containing a 2 kb fragment upstream of <i>mgr4019</i>	(4)
pAL02/2	Gm ^r , pT18mob2 vector containing a 2 kb fragment downstream of <i>mgr4019</i>	(4)
pCM157	Tc ^r , Cre recombinase expression vector	(5)
pLYJ27	pCM184 plus napA 2-kb upstream and internal region	This study
pLYJ31	pCM184 plus norCB 2-kb upstream region	This study
pLYJ32	pCM184 plus nosZ 2-kb downstream region	This study
pLYJ34	pLYJ31 plus norCB 2-kb downstream region	This study
pLYJ35	pLYJ32 plus nosZ 2-kb upstream region	This study
pLYJ71	pBBR1MCS-2 plus nap1 with its own promoter	This study
pLYJ75	pBBR1MCS-2 plus <i>norCB</i> with its own promoter	This study
pLYJ76	pBBR1MCS-2 plus nosZ with its own promoter	This study
pLYJ78	pJET1.2/blunt plus <i>nap2</i>	This study
pLYJ79	pLYJ71 plus <i>nap2</i> from pLYJ78	This study
pLYJ80	PLYJ78 plus nap3	This study
pLYJ85	pAL01 plus nap 2-kb upstream region	This study
pLYJ92	pAL02/2 plus nap 2-kb downstream region	This study
pLYJ97	pBBR1MCS-2 plus gusA from pK19mobGII	This study
pLYJ94	pLYJ97 plus nirS promoter region	This study
pLYJ98	pLYJ97 plus nap promoter region	This study
pLYJ99	pLYJ97 plus norCB promoter region	This study
pLYJ100	pLYJ97 plus nosZ promoter region	This study

Table S2. Plasmids used in this work

Table S3. Effect of different electron acceptors and oxygen on growth and magnetic response

Culture condition	Nitrogen source	Growth (ΔΟD _{565 nm} ^a)	Magnetic response (Cmag)
Anaerobic	4 mM NO_3^-	0.18 ± 0.02	1.8 ± 0.2
	1 mM NO_2^-	0.01 ± 0.00	1.7 ± 0.0
	10 mM N ₂ O	0.01 ± 0.000	1.7 ± 0.0
	4 mM NH_4^+	0	ND^{b}
Microaerobic	4 mM NO_3^-	0.23 ± 0.01	2.1 ± 0.2
	4 mM NH_4^+	0.17 ± 0.06	2.0 ± 0.2
Aerobic	4 mM NO_3^-	1.21 ± 0.04	0
	4 mM NH_4^+	1.25 ± 0.07	0

^a Values represent means and standard deviations were obtained with triplicate cultures and

repeated three times.

^b Cmag value was not tested.

Table S4. BlastP analysis results of denitrification genes in MTB and non-MTB using MSR-1 as a query.

Gene in MSR-1	Encoded gene product (aa, kDa, pI)	AMB-1 (e-value, similarity)	MS-1 (e-value, similarity)	MC-1 (e-value, similarity)	Best hit in non-MTB (e-value, similarity)
mgr_4000*	NapF, small transmembrane protein of unknown function (7) (102, 10.17, 8.67)	<i>amb2692</i> (1e-18, 64%) ^b	<i>BAB59020.1</i> (4e-13, 67%)	<i>mmc1_1591</i> (2e-10, 62%)	<i>Serratia odorifera 4</i> Rx13 (1e-18, 64%)
mgr_4001*	NapD, cytoplasmic protein (7) (102, 11.21, 4.91)	<i>amb2691</i> (5e-43, 76%)	<i>magn03008202</i> (2e-41, 77%)	<i>mmc1_1592</i> (8e-07, 54%)	<i>Beggiatoa sp.</i> PS (9e-17, 62%)
mgr_4002*	NapA, nitrate reductase (NR) catalytic subunit containing molybdenum cofactor and a [4Fe-4S] cluster (6) (835, 93.60, 8.70)	<i>amb2690</i> (0, 91%)	magn03008203 (0, 91%)	<i>mmc1_1591</i> (0, 83%)	<i>Azoarcus sp.</i> BH72 (0, 85%)
mgr_4003*	NapG, soluble protein (1) (272, 28.92, 7.44)	<i>amb2689</i> (2e-125, 78%)	<i>magn03008204</i> (4e-124, 79%)	<i>mmc1_1590</i> (4e-93, 71%)	<i>Laribacter hongkongensis</i> HLHK9 (3e-111, 78%)
mgr_4004*	NapH, membrane protein (1) (304, 32.72, 9.42)	<i>amb2688</i> (9e-132, 77%)	<i>magn03008205</i> (3e-125, 77%)	<i>mmc1_1589</i> (4e-85, 65%)	<i>Dechloromonas aromatica</i> RCB (3e-112, 70%)
mgr_4005*	NapB, NR subunit, a <i>c</i> -type cytochrome (6) (148, 16.44, 8.66)	<i>amb2687</i> (1e-63, 79%)	<i>magn03008206</i> (1e-66, 79%)	<i>mmc1_1588</i> (8e-31, 56%)	<i>Pseudovibrio sp.</i> JE062 (5e-38, 65%)
mgr_4006*	NapC, a membrane-bound tetraheme (6) (222, 25.53, 8.91)	<i>amb2686</i> (3e-115, 87%)	<i>magn03008207</i> (4e-114, 87%)	<i>mmc1_1587</i> (4e-77, 72%)	<i>Pseudovibrio sp.</i> JE062 (4e-90, 71%)
mgr_1052	Nitrite reductase, NirS (540, 59.26, 8.81)	amb1395 (0, 91%) amb4165 (0, 78%)	<i>magn03008451</i> (0, 91%)	_	Dechlorosoma suillum PS (0, 90%)

mgr_3484*	Nitric-oxide reductase subunit C, NorC (149, 16.23, 6.90)	<i>amb2945</i> (5e-84, 88%)	-	<i>mmc_0121</i> (4e-57, 72%)	Nitrosococcus halophilus Nc4 (1e-74, 81%)
mgr_3485*	Nitric-oxide reductase subunit B, NorB (445, 50.35, 8.82)	<i>amb2944</i> (0, 93%)	-	<i>mmc_0120</i> (1e-179, 73%)	Azospirillum sp. B510 (0, 87%)
mgr_3486	NorQ (262, 28.95, 5.40)	<i>amb2943</i> (1e-151, 90%)	_	<i>mmc_0119</i> (1e-108, 77%)	Halomonas halodenitrificans (1e-144, 86%)
mgr_3487	NorD (632, 70.80, 7.75)	<i>amb2942</i> (0, 78%)	-	<i>mmc_0117</i> (2e-64, 51%)	<i>Nitrosococcus halophilus</i> Nc4 (0, 70%)
mgr_2761*	Nitrous-oxide reductase, NosZ (760, 83.78, 6.06)	amb3086 (0, 90%)	magn03008954 (9e-145, 92%) magn03007281 (0, 88%)	_	Dechlorosoma suillum PS (0, 86%)

*indicate genes deleted.

REFERENCES

- Berks BC, Ferguson SJ, Moir JW, Richardson DJ. 1995. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta 1232:97-173.
- Katzen F, Becker A, Ielmini MV, Oddo CG, Ielpi L. 1999. New mobilizable vectors suitable for gene replacement in gram-negative bacteria and their use in mapping of the 3' end of the *Xanthomonas campestris pv.* campestris *gum* operon. Appl. Environ. Microbiol. 65:278-282.
- 3. **Kovach ME, et al.** 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene **166**:175-176.
- 4. Lohsse A, et al. 2011. Functional analysis of the magnetosome island in *Magnetospirillum gryphiswaldense*: the *mamAB* operon is sufficient for magnetite biomineralization. PLoS One 6:e25561.
- 5. **Marx C, Lidstrom M.** 2002. Broad-host-range *cre-lox* system for antibiotic marker recycling in Gram-negative bacteria. BioTechniques **33**:1062-1067.
- Moreno-Vivian C, Cabello P, Martinez-Luque M, Blasco R, Castillo F. 1999.
 Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J. Bacteriol. 181:6573-6584.
- Reyes F, Gavira M, Castillo F, Moreno-Vivian C. 1998. Periplasmic nitratereducing system of the phototrophic bacterium *Rhodobacter sphaeroides* DSM 158: transcriptional and mutational analysis of the *napKEFDABC* gene cluster. Biochem. J. 331 (Pt 3):897-904.
- Schultheiss D, Kube M, Schüler D. 2004. Inactivation of the flagellin gene *flaA* in Magnetospirillum gryphiswaldense results in nonmagnetotactic mutants lacking flagellar filaments. Appl. Environ. Microbiol. 70:3624-3631.