A single amino acid substitution changes the self-assembly status of a type IV piliation secretin.

Nicholas N. Nickerson^{1,2,‡}, Sophie S. Abby^{3,4}, Eduardo P. C. Rocha^{3,4} Mohamed Chami⁵ and Anthony P. Pugsley^{1,2*}

^{1.} Institut Pasteur, Molecular Genetics Unit, Microbiology Department, rue du Docteur Roux, 75015 Paris, France

² CNRS ERA3526, rue du Docteur Roux, 75015 Paris, France

^{3.} Institut Pasteur, Microbial Evolutionary Genomics, Genomes and Genetics Department, rue du Docteur Roux, 75015 Paris, France

^{4.} CNRS, UMR3525, rue du Docteur Roux, 75015 Paris, France

^{5.} Center for Cellular Imaging and Nanoanalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland

[‡] Current address: Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Running title: Secretin auto-assembly

^{*}To whom correspondence should be addressed. Institut Pasteur, rue du Docteur Roux, 75724 Paris Cedex 15, France. Tel ++33 140613762, E-mail, max@pasteur.fr

Strains/plasmi ds	Vectors, genotypes and relevant characteristics	Reference/source	
Stains			
PAP105	Δ (lac-pro) F' (lacl ^{q1} Δ lacZM15 proAB ⁺ Tn10))	Lab collection	
BL21(DE3)	E. coli B F' ompT hsdS gal (λ DE3) endA	Studier et al. (1990)	
Plasmids			
pCHAP3783	pIVEX2.3MCS- <i>pilQ^{MC58} Neisseria meningitidis</i> (MC58)	Guilvout et al. (2008)	
pCHAP3731	pIVEX2.3MCS- <i>puID</i> ²⁸⁻⁶⁶⁰	Guilvout et al. (2008)	
pCHAP3716	pIVEX2.3MCS- <i>puID</i> ^{28-42/259-660}	Guilvout et al. (2008)	
pCHAP3635	pSU18 p _{lac} pulD	Guilvout et al. (1999)	
pCHAP8243	pBR322 <i>pulS</i> , pelBsp- <i>pulAB pulC-O ∆pulD</i>	Guilvout et al. (1999)	
pCHAP585	pUC19 p _{lac} pulS	Guilvout <i>et al</i> . (1999)	
pDIA17	pACYC184-lacl ^q	Munier et al. (1991)	
pIVEX2.3MCS	Expression vector with T7 promoter	Roche Applied	
		Science	
pCHAP9147	pIVEX2.3MCS-pIV (f1 filamentous phage secretin)	This study	
pCHAP9117	pIVEX2.3MCS- <i>piIQ</i> ^{MC58} Thr ₃₅₉ Ser/Pro ₆₁₃ Leu	This study	
pCHAP9119	pIVEX2.3MCS- <i>piIQ</i> ^{MC58} Thr ₃₅₉ Ser	This study	
pCHAP9120	pIVEX2.3MCS- <i>piIQ</i> ^{MC58} Pro ₆₁₃ Leu	This study	
pCHAP9121	pIVEX2.3MCS- <i>puID</i> ²⁸⁻⁶⁶⁰ Pro ₄₄₃ Leu	This study	
pCHAP9122	pIVEX2.3MCS- <i>puID</i> ^{28-42/259-660} Pro ₄₄₃ Leu	This study	
pCHAP9124	pSU18-P _{lac} puID Pro ₄₄₃ Leu	This study	
pCHAP9129	pIVEX2.3MCS- <i>pilQ</i> ⁸⁰¹³ Neisseria meningitidis (8013)	This study	
pCHAP9132	pIVEX2.3MCS- <i>pilQ</i> ⁸⁰¹³ <i>N. meningitidis</i> (8013)	This study	
	Pro ₆₀₅ Leu		
pHH41	pIVEX2.3MCS-pilQ ^{PAK} Pseudomonas aeruginosa	Hoang <i>et al</i> . (2011)	
	(PAK)		
pCHAP9162	pIVEX2.3MCS- <i>pilQ^{PAK} P. aeruginosa</i> (PAK) Pro ₅₆₂ Leu	This study	
pCHAP9166	pIVEX2.3MCS-IspD Legionella pneumophila	This study	
pCHAP9167	pIVEX2.3MCS-gspD Shewanella oneidensis	This study	
pCHAP9169	pIVEX2.3MCS-xpsD Xanthomonas campestris	This study	
pCHAP9164	T7 promoter - Aeromonas hydrophila linear template	This study	
pCHAP9168	T7 promoter - Vibrio cholera linear template	This study	

Table S1. Strains and plasmids

Name	Primer sequence ^a (5'-3')	Restriction
		site/mutation
PNN5	GGAAACATTACAGACATCAAAG	
PNN6	CCTCAATAGCGCAGGCTG	
PNN20	GATATTCTCGCCACGctgAGCATCGTTACCCTC	Pro ₄₄₃ Leu
PNN21	GAGGGTAACGATGCTcagCGTGGCGAGAATATC	Pro ₄₄₃ Leu
PNN73	CCAAAACGCTTGCCAATgcgCGCGTGCTGACCCAAAAC	Pro ₆₁₃ Ala
PNN74	GTTTTGGGTCAGCACGCGcgcATTGGCAAGCGTTTTGG	Pro ₆₁₃ Ala
PNN75	CCAAAACGCTTGCCAATggcCGCGTGCTGACCCAAAAC	Pro ₆₁₃ Gly
PNN76	GTTTTGGGTCAGCACGCGgccATTGGCAAGCGTTTTGG	Pro ₆₁₃ Gly
PNN77	CCAAAACGCTTGCCAATgtgCGCGTGCTGACCCAAAAC	Pro ₆₁₃ Val
PNN78	GTTTTGGGTCAGCACGCGcacATTGGCAAGCGTTTTGG	Pro ₆₁₃ Val
PNN79	CCAAAACGCTTGCCAATtgcCGCGTGCTGACCCAAAAC	Pro ₆₁₃ Cys
PNN80	GTTTTGGGTCAGCACGCGgcaATTGGCAAGCGTTTTGG	Pro ₆₁₃ Cys
PNN81	CCAAAACGCTTGCCAATttcCGCGTGCTGACCCAAAAC	Pro ₆₁₃ Phe
PNN82	GTTTTGGGTCAGCACGCGgaaATTGGCAAGCGTTTTGG	Pro ₆₁₃ Phe
PNN38	CGCTTGCCAATCCGagcGTGCTGACCCAAAACC	Arg ₆₁₄ Ser
PNN39	GGTTTTGGGTCAGCACgctCGGATTGGCAAGCG	Arg ₆₁₄ Ser
PNN43	CCAAAACGCTTGCCaccCCGCGCGTGCTGACCC	Asn ₆₁₂ Thr
PNN44	GGGTCAGCACGCGCGGggtGGCAAGCGTTTTGG	Asn ₆₁₂ Thr
PNN34	CGCTTGCCAATctgCGCGTGCTGACCC	Pro ₆₀₅ Leu
PNN35	GGGTCAGCACGCGcagATTGGCAAGCG	Pro ₆₀₅ Leu
PNN71	CGGCGAGATCGTCTCCCAActgAAGGTCGTGACCTCGGACAAG	Pro ₅₆₂ Leu
PNN72	CTTGTCCGAGGTCACGACCTTcagTTGGGAGACGATCTCGCCG	Pro ₅₆₂ Leu
PNN30	gaattccatatgGGAAACATTACAGACATCAAAG	Ndel
PNN31	cgcggatccggccggccTCAATAGCGCAGGCTGTTGCC	BamHI-Fsel
PNN59	ggaattccatatgCAAGTAATTGAAATGAATAATTCGC	Ndel
PNN60	cgcggatccCTACAGGGCGCGTACTATGG	BamHI
Legion-For	ggaattccatatgAATGATGTCAATATTTCAACCGTAAC	Ndel
Legion-Rev	cgcgagctcTTATTTGGTCATTTTTGATGAGTATTG	Sacl
Shewan-For	ggaattccatatgGAACAATATGCGGCCAACTTTAAG	Ndel
Shewan-	cgcggatccTCATTGTGTTTTATCTTTGTTTTTG	BamHI
Rev		
Xanth-For	ggaattccatatgGCCGATGCACCGGCGGTG	Ndel
Xanth-Rev	cgcggatccTCAGCGCGTGCGCGCGCGC	BamHI
Aerom-Lin-	ctttaagaaggagatataccatgACCGAATATTCCGCCAGCTTC	T7 promoter
F		-
Aerom-Lin-	tgatgatgagaacccccccTTACTTGTTACCCACGAATGGC	T7
R		terminator
Vibrio-Lin-F	ctttaagaaggagatataccatgAACGAGTTTAGCGCCAGCTTTAAAG	T7 promoter
Vibrio-Lin-R	tgatgatgagaacccccccCCATTGCTTGGCTTCCATCTG	T7
		terminator

Table S2. Primer sequences

^a Lower case letters correspond to either restriction enzyme sequence, base substitution in mutagenic primers or additional sequence recommended for linear template production.

FIG S1 Multimerization of T2SS secretins. Secretins from *Klebsiella oxytoca* (PuID), *A. hydrophila* (ExeD), *L. pneumophila* (LspD), *S. oneidensis* (GspD), *V. Cholera* (EpsD), *X. campestris* (XcsD), and a green fluorescent protein (GFP) control were synthesized in the *E. coli* RTS 100 *in vitro* transcription-translation system supplemented with lecithin liposomes. Aliquots from each sample were diluted in SDS sample buffer, separated by SDS-PAGE on a 4-20% gradient gel and stained with Coomassie blue. Secretin multimers are visible at the bottom of sample wells and arrows denote trace amounts of *L. pneumophila* and *X. campestris* multimer. Mu, multimer.

FIG S2 PuIDP443L can multimerize and is structurally similar to wild type PuID. (A) Total *in vitro* synthesis reactions of full length (PuID²⁸⁻⁶⁶⁰) and truncated (PuID^{28-42/259-660}) PuID wild type and P443L variant analyzed by SDS-PAGE and immunoblotting with PuID-specific antisera. Mu, multimer; Mo, monomer. (B) PuID^{28-42/259-660} and PuID^{28-42/259-660}P443L produced in the *in vitro* synthesis reaction, purified on magnetic nickel beads, negatively stained and analyzed by electron microscopy. Bottom panels show class averages of 363 (PuID^{28-42/259-660}P443L) manually selected secretin particles. The scale bar represents 25 nm.

5