SUPPLEMENTARY MATERIAL for

Identification of a novel prostate cancer susceptibility locus on chromosome 8q24

Meredith Yeager^{1,2+}, Nilanjan Chatterjee², Julia Ciampa², Kevin B. Jacobs³, Jesus Gonzalez Bosquet², Richard B. Hayes², Peter Kraft⁴, Sholom Wacholder², Nick Orr², Sonja Berndt², Kai Yu², Amy Hutchinson^{1,2}, Zhaoming Wang^{1,2}, Laufey Amundadottir², Heather Spencer Feigelson⁵, Michael J. Thun⁵, W. Ryan Diver⁵, Demetrius Albanes², Jarmo Virtamo⁶, Stephanie Weinstein², Fredrick R. Schumacher^{4,7}, Geraldine Cancel-Tassin⁸, Olivier Cussenot⁸, Antoine Valeri⁸, Gerald L Andriole⁹, E. David Crawford¹⁰, Christopher A. Haiman¹¹, Brian Henderson¹¹, Laurence Kolonel¹², Loic Le Marchand¹², Afshan Siddiq¹³, Elio Riboli¹³, Timothy J. Key¹⁴, Rudolf Kaaks¹⁵, William Isaacs¹⁶, Sarah Isaacs¹⁶, Kathleen E. Wiley¹⁶, Henrik Gronberg¹⁷, Fredrik Wiklund¹⁷, Pär Stattin¹⁸, Jianfeng Xu¹⁹, S. Lilly Zheng¹⁹, Jielin Sun¹⁹, Lars J. Vatten²⁰, Kristian Hveem²⁰, Merethe Kumle²¹, Margaret Tucker², Daniela S. Gerhard²², Robert N. Hoover², Joseph F. Fraumeni, Jr², David J. Hunter^{4,23}, Gilles Thomas², Stephen J. Chanock²

¹ Core Genotyping Facility, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702.

² Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Heath, Department of Health and Human Services, Bethesda, Maryland 20892, USA.

⁵Department of Epidemiology and Surveillance Research, American Cancer Society, Atlanta, GA

⁶ Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, FIN-00300, Finland.

⁷ Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

⁸ Centre de Recherche pour les Pathologies Prostatiques (CeRePP), Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75970 Paris, France.

⁹ Division of Urologic Surgery, Washington University School of Medicine, St. Louis, Missouri 63108, USA.

¹⁰ Department of Surgery, University of Colorado at Denver and Health Sciences Center, Denver, CO, USA.

¹¹ Department of Preventive Medicine, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA

¹² Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, HI

¹³ Division of Epidemiology, Public Health and Primary Care, Imperial College, London, England

¹⁴ Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom

¹⁵ Division of Clinical Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany

¹⁶ Johns Hopkins Hospital, Baltimore, MD 21287

¹⁷ Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm

¹⁸ Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Sweden

¹⁹ Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC 27157

²⁰ Department of Public Health and General Practice, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway

²¹ Institute of Community Medicine, University of Tromsø, Norway

²² Office of Cancer Genomics, NCI, NIH, DHHS Bethesda, MD 20892

²³ Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA

⁺Correspondence to:

Meredith Yeager, Ph.D. Core Genotyping Facility Advanced Technology Center National Cancer Institute 8717 Grovemont Circle Gaithersburg, MD 20877 (FedEx) Bethesda, MD 20892 (US Mail) Phone: 301-435-7613 Fax: 301-443-7088

³ Bioinformed Consulting Services, Gaithersburg, Maryland 20877, USA.

⁴ Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

Supplementary Figure 1. Linkage disequilibrium (LD) and Association Results for 55 SNPs Genotyped Over ~200kb of Chromosome 8q24

Supplementary Figure 2. Joint Odds-Ratio Adjusted For Study for rs4242382 and rs620861 Risk Alleles Italics indicate ORs are significant at the 5% significance level. p-value for 1 df test for multiplicative interaction = 2.2×10^{-3} .

Supplementary Table 1. Detailed association results for rs620861 and rs7841060

rs620861

Adjusted genotype test, dichotomous phenotype

SUBSET	Rank	MAF	Subjects	score X ²	score p-value	df	het OR	het OR	95% CI	hom OR	hom Ol	R 95% CI
STAGE1-3	37	0.372 0.338	9108 10256	45.58	1.3E-10	2	1.17	(1.1 -	1.24)	1.33	(1.21-	1.45)
STAGE1	1338	0.383 0.356	926 971	4.43	1.1E-01	2	1.22	(1.01 -	1.49)	1.21	(.91 -	1.61)
PLCO	1338	0.383 0.356	926 971	4.43	1.1E-01	2	1.22	(1.01 -	1.49)	1.21	(.91 -	1.61)
STAGE2	45	0.371 0.341	4044 4127	17.08	2.0E-04	2	1.12	(1.02 -	1.22)	1.33	(1.16-	1.53)
CPSII	125	0.383 0.343	1639 1632	10.98	4.1E-03	2	1.16	(1.01 -	1.35)	1.42	(1.14-	1.77)
ATBC	139	0.353 0.307	866 905	8.71	1.3E-02	2	1.25	(1.02 -	1.52)	1.54	(1.1 -	2.14)
HPFS	1589	0.357 0.380	589 594	2.30	3.2E-01	2	0.83	(.65 -	1.06)	0.88	(.62 -	1.25)
FPCC	487	0.377 0.343	950 996	5.29	7.1E-02	2	1.12	(.93 -	1.36)	1.39	(1.04 -	1.86)
STAGE3	26	0.370 0.332	4138 5158	27.27	1.2E-06	2	1.21	(1.11 -	1.33)	1.35	(1.18-	1.55)
CONOR	1297	0.359 0.328	659 605	3.05	2.2E-01	2	1.21	(.96 -	1.54)	1.24	(.87 -	1.76)
JHU	1201	0.377 0.345	451 988	3.06	2.2E-01	2	1.14	(.9 -	1.45)	1.36	(.95 -	1.95)
SWEDEN	123	0.365 0.326	1356 2208	8.25	1.6E-02	2	1.17	(1.01 -	1.36)	1.35	(1.07-	1.69)
MEC	162	0.387 0.341	682 675	6.72	3.5E-02	2	1.30	(1.03 -	1.63)	1.42	(1.01-	2.01)
EPIC	253	0.368 0.324	990 682	6.86	3.2E-02	2	1.26	(1.02 -	1.55)	1.41	(1.02 -	1.95)

Adjusted genotype test, trichotomous phenotype

SUBSET	Rank MAF	Subjects	score X ²	score p-value	df	het1 OR	het1 O	R 95% CI	hom1 OR	hom1	OR 95% CI	het2 OR	het2 O	R 95% CI	hom2 OR	hom2	OR 95% CI
STAGE1-3	37 0.373 0.335 0.340	8449 4532 4603	47.04	1.5E-09	4	1.21	(1.12 -	1.31)	1.33	(1.18-	1.5)	1.13	(1.04 -	1.22)	1.36	(1.2 -	1.53)
STAGE1	2237 0.383 0.351 0.361	926 425 546	6.14	1.9E-01	4	1.35	(1.05 -	1.73)	1.21	(.84 -	1.74)	1.14	(.9 -	1.43)	1.21	(.86 -	1.7)
PLCO	2237 0.383 0.351 0.361	926 425 546	6.14	1.9E-01	4	1.35	(1.05 -	1.73)	1.21	(.84 -	1.74)	1.14	(.9 -	1.43)	1.21	(.86 -	1.7)
STAGE2	94 0.371 0.341 0.338	4044 1827 1937	19.25	7.0E-04	4	1.11	(.98 -	1.25)	1.30	(1.08-	1.56)	1.12	(1	1.26)	1.43	(1.19 -	1.72)
CPSII	205 0.383 0.345 0.337	1639 650 823	12.52	1.4E-02	4	1.15	(.95 -	1.4)	1.41	(1.05 -	1.89)	1.17	(.98 -	1.4)	1.54	(1.17 -	2.02)
ATBC	138 0.353 0.307 0.301	866 526 244	12.14	1.6E-02	4	1.30	(1.03 -	1.63)	1.45	(. 99 -	2.13)	1.10	(.82 -	1.47)	2.20	(1.21 -	4.01)
HPFS	3178 0.357 0.381 0.372	589 416 109	2.61	6.2E-01	4	0.81	(.62 -	1.06)	0.87	(. 59 -	1.29)	0.98	(.63 -	1.52)	0.86	(.47 -	1.59)
FPCC	1404 0.377 0.338 0.345	950 235 761	5.48	2.4E-01	4	1.11	(.82 -	1.5)	1.51	(.93 -	2.46)	1.13	(.92 -	1.38)	1.36	(1	1.85)
STAGE3	21 0.372 0.327 0.337	3479 2280 2120	28.31	1.1E-05	4	1.29	(1.15 -	1.45)	1.39	(1.16-	1.65)	1.14	(1.01 -	1.28)	1.35	(1.12 -	1.62)
JHU	1302 0.377 0.329 0.361	451 488 497	5.50	2.4E-01	4	1.24	(.94 -	1.63)	1.57	(1.03 -	2.41)	1.05	(.8 -	1.38)	1.18	(.78 -	1.79)
SWEDEN	224 0.365 0.326 0.327	1356 991 1180	9.85	4.3E-02	4	1.23	(1.03 -	1.47)	1.28	(.97 -	1.69)	1.12	(.95 -	1.32)	1.39	(1.07 -	1.82)
MEC	145 0.387 0.344 0.334	682 339 223	11.46	2.2E-02	4	1.48	(1.12 -	1.96)	1.25	(.84 -	1.87)	1.16	(.84 -	1.6)	1.80	(1.05 -	3.09)
EPIC	488 0.368 0.315 0.343	990 462 220	8.28	8.2E-02	4	1.26	(1	1.6)	1.58	(1.08-	2.31)	1.25	(.91 -	1.71)	1.14	(.72 -	1.82)

rs7841060

Adjusted genotype test, dichotomous phenotype

SUBSET	Rank	MAF	Subjects	score X ²	score p-value	df	het OR	het OR	95% CI	hom OR	hom O	R 95% CI
STAGE1-3	32	0.211 0.246	9111 10257	59.09	1.5E-13	2	1.19	(1.12 -	1.26)	1.52	(1.33-	1.74)
STAGE1	1796	0.217 0.235	926 971	3.44	1.8E-01	2	1.02	(.84 -	1.24)	1.49	(.98 -	2.27)
PLCO	1796	0.217 0.235	926 971	3.44	1.8E-01	2	1.02	(.84 -	1.24)	1.49	(.98 -	2.27)
STAGE2	12	0.205 0.239	4047 4127	27.07	1.3E-06	2	1.22	(1.11 -	1.33)	1.48	(1.21-	1.83)
CPSII	13	0.194 0.244	1640 1632	24.18	5.6E-06	2	1.36	(1.17 -	1.57)	1.75	(1.26-	2.43)
ATBC	1824	0.212 0.233	866 903	2.31	3.2E-01	2	1.11	(.91 -	1.36)	1.31	(.85 -	2.02)
HPFS	1803	0.215 0.227	589 595	2.08	3.5E-01	2	0.99	(.78 -	1.26)	1.53	(.84 -	2.78)
FPCC	391	0.211 0.241	952 997	5.75	5.6E-02	2	1.24	(1.03 -	1.5)	1.28	(.85 -	1.92)
STAGE3	21	0.216 0.254	4138 5159	31.15	1.7E-07	2	1.20	(1.1 -	1.31)	1.56	(1.29-	1.9)
CONOR	124	0.204 0.250	661 605	8.15	1.7E-02	2	1.35	(1.07 -	1.71)	1.59	(.93 -	2.74)
JHU	5071	0.243 0.245	451 990	0.02	9.9E-01	2	1.01	(.8 -	1.28)	1.03	(.64 -	1.66)
SWEDEN	59	0.227 0.260	1354 2206	9.56	8.4E-03	2	1.20	(1.04 -	1.39)	1.43	(1.05 -	1.94)
MEC	1	0.183 0.265	682 676	30.78	2.1E-07	2	1.45	(1.15 -	1.81)	4.42	(2.35-	8.29)
EPIC	1756	0.220 0.238	990 682	2.25	3.2E-01	2	1.04	(.85 -	1.29)	1.39	(.9 -	2.14)

Adjusted genotype test, trichotomous phenotype

SUBSET	Rank MAF	Subjects	score X ²	score p-value	df	het1 OR	het1 O	R 95% CI	hom1 OR	hom1 C	OR 95% CI	het2 OR	het2 O	R 95% CI	hom2 OR	hom2	OR 95% CI
STAGE1-3	34 0.212 0.240 0.250	8450 45 32 4604	51.54	1.7E-10	4	1.16	(1.08 -	1.26)	1.35	(1.14 -	1.6)	1.18	(1.09 -	1.28)	1.63	(1.38 -	1.92)
STAGE1	2472 0.217 0.221 0.246	926 424 547	5.58	2.3E-01	4	0.97	(.76 -	1.24)	1.19	(.69 -	2.06)	1.07	(.85 -	1.34)	1.73	(1.08 -	2.76)
PLCO	2472 0.217 0.221 0.246	926 424 547	5.58	2.3E-01	4	0.97	(.76 -	1.24)	1.19	(.69 -	2.06)	1.07	(.85 -	1.34)	1.73	(1.08 -	2.76)
STAGE2	53 0.205 0.233 0.241	4047 1827 1937	25.11	4.8E-05	4	1.22	(1.08 -	1.37)	1.29	(.99 -	1.69)	1.23	(1.1 -	1.39)	1.52	(1.18 -	1.95)
CPSII	19 0.194 0.246 0.240	1640 651 822	25.58	3.8E-05	4	1.49	(1.23 -	1.81)	1.45	(.93 -	2.27)	1.29	(1.08 -	1.55)	1.78	(1.21 -	2.61)
ATBC	2127 0.212 0.211 0.252	866 524 244	4.23	3.8E-01	4	1.02	(.81 -	1.29)	0.91	(.53 -	1.56)	1.25	(.92 -	1.69)	1.57	(.86 -	2.89)
HPFS	2684 0.215 0.230 0.243	589 417 109	3.17	5.3E-01	4	1.02	(.79 -	1.33)	1.53	(.8 -	2.92)	1.02	(.66 -	1.58)	2.08	(.84 -	5.14)
FPCC	792 0.211 0.251 0.238	952 235 762	7.03	1.3E-01	4	1.25	(.92 -	1.7)	1.64	(.9 -	3.)	1.24	(1.01 -	1.52)	1.17	(.75 -	1.83)
STAGE3	25 0.218 0.249 0.258	3477 2281 2120	25.04	4.9E-05	4	1.16	(1.04 -	1.3)	1.43	(1.12 -	1.82)	1.16	(1.03 -	1.31)	1.71	(1.34 -	2.18)
JHU	755 0.243 0.240 0.249	451 489 498	7.05	1.3E-01	4	1.10	(.84 -	1.44)	0.74	(.41 -	1.34)	0.92	(.7 -	1.21)	1.30	(.78 -	2.19)
SWEDEN	329 0.227 0.259 0.260	1354 990 1179	9.12	5.8E-02	4	1.17	(.98 -	1.4)	1.43	(1	2.06)	1.21	(1.02 -	1.43)	1.41	(1	2.)
MEC	1 0.183 0.260 0.278	682 340 223	31.71	2.2E-06	4	1.38	(1.05 -	1.82)	4.40	(2.19-	8.83)	1.50	(1.09 -	2.07)	5.28	(2.51 -	11.08)
EPIC	2004 0.220 0.229 0.255	990 462 220	4.19	3.8E-01	4	1.01	(.79 -	1.28)	1.20	(. 73 -	1.98)	1.13	(.82 -	1.55)	1.83	(1.01 -	3.32)

Supplementary Table 2. Pairwise estimates of $r^2 A$) per geographic location 1 and B) per study for the most highly significant SNPs in prostate regions 1 - 4^1 .

Α.					EUROPE	SCAND	USA
	SNP1	region	SNP2	region	(1713)	(3119)	(4289)
	rs620861	4	rs7841060	2	0.00460	0.01124	0.00002
	rs620861	4	rs4242382	1	0.00357	0.00050	0.00170
	rs620861	4	rs6983267	3	0.00528	0.01453	0.00982
	rs4242382	1	rs6983267	3	0.00500	0.00001	0.00108
	rs4242382	1	rs7841060	2	0.00330	0.00041	0.00071
	rs6983267	3	rs7841060	2	0.00009	0.00479	0.00324

¹ EUROPE = FPCC and non-Scandinavian countries represented in the EPIC study; SCAN = ATBC, CONOR, SWEDEN, and Scandinavian countries represented in the EPIC study; USA = CPSII, HPFS, JHU, PLCO

В.	-				ATBC	CONOR	CPSII	EPIC	FPCC	HPFS	JHU	MEC	PLCO	SWEDEN
	SNP1	region	SNP2	region	(868)	(662)	(1640)	(990)	(952)	(589)	(451)	(682)	(927)	(1362)
	rs620861	4	rs7841060	2	0.01250	0.01255	0.00035	0.00511	0.00663	0.00048	0.00004	0.00010	0.00000	0.00933
	rs620861	4	rs6983267	1	0.02312	0.00538	0.00687	0.00634	0.00308	0.01698	0.01016	0.00852	0.01246	0.01867
	rs620861	4	rs4242382	3	0.00136	0.00141	0.00272	0.01113	0.00118	0.00015	0.00057	0.00512	0.00066	0.00110
	rs4242382	1	rs6983267	3	0.00570	0.00796	0.00347	0.00119	0.00537	0.00003	0.00171	0.00040	0.00028	0.00002
	rs4242382	1	rs7841060	2	0.00177	0.00002	0.00001	0.00407	0.00097	0.00004	0.00862	0.00165	0.00263	0.00448
	rs6983267	3	rs7841060	2	0.01120	0.01027	0.00608	0.00027	0.00029	0.00000	0.02003	0.00521	0.00011	0.00319

Pagion ¹	Variable	hat OP	hom OP	n valua
Region	Valiable	netOK		p-value
2	rs7841060:G	1.19	1.43	1.38E-12
4	rs620861:C	1.13	1.29	1.13E-08
3	rs6983267:G	1.20	1.44	3.14E-18
1	rs4242382:A	1.35	1.82	7.49E-21

Supplementary Table 3. Multiple regression analysis of primary signals from regions 1 - 4.¹

¹ In order on chr8 and as described by Witte, J.S. Multiple prostate cancer risk variants on 8q24. Nat Genet 39, 579-80 (2007). Model included all 4 SNPs and covariates used in the single-SNP analyses.

,			•
Locus	Location	MAF^1	p-value ²
rs6999589	128154828	0.252 0.251	5.73E-01
rs1902431	128156258	0.236 0.245	1.04E-01
rs6470494	128157086	0.281 0.309	4.49E-08
rs1016342	128161637	0.471 0.477	2.71E-01
rs4871008	128162723	0.431 0.399	6.16E-10
rs7841060	128165659	0.211 0.246	1.48E-13
rs11993508	128169258	0.124 0.117	1.75E-01
rs1456316	128170030	0.356 0.382	8.19E-07
rs9656814	128170159	0.345 0.344	9.57E-01
rs17832285	128178175	0.175 0.160	9.73E-04
rs7825340	128178311	0.201 0.215	1.25E-02
rs7826337	128178756	0.305 0.302	7.20E-01
rs17765137	128179996	0.055 0.044	5.22E-06
rs7006409	128180611	0.323 0.327	9.09E-01
rs1378897	128191841	0.062 0.055	4.30E-03
rs1456305	128196434	0.127 0.117	3.65E-03
rs17446916	128232156	0.433 0.442	8.97E-02
rs7002343	128241210	0.351 0.343	3.82E-01
rs2124600	128241868	0.351 0.354	9.21E-01
rs2456461	128251633	0.409 0.412	9.95E-01
rs2466024	128257201	0.400 0.403	9.81E-01
rs2456449	128262163	0.343 0.354	1.62E-01
rs2456452	128266262	0.340 0.346	4.63E-01
rs2445610	128266270	0.358 0.368	3.08E-01
rs16902008	128266477	0.051 0.042	5.60E-05
rs2466031	128278791	0.406 0.417	7.22E-02
rs2466032	128279002	0.297 0.308	8.03E-02
rs2466035	128280411	0.313 0.324	6.49E-03
rs2445614	128281776	0.244 0.247	1.43E-01
rs9643217	128282415	0.078 0.081	5.82E-01
rs11991241	128288484	0.309 0.327	1.11E-02
rs7816475	128294622	0.231 0.241	1.81E-01
rs10087719	128298045	0.270 0.275	7.96E-01
rs10505481	128309583	0.237 0.237	1.67E-01

Supplementary Table 4. Association results for all 8q24 SNPs from the present study

rs2044869	128316227	0.280 0.275	2.15E-01
rs17377068	128321036	0.211 0.212	1.96E-01
rs283741	128322175	0.437 0.438	7.36E-01
rs10104427	128325434	0.204 0.200	5.78E-01
rs6992922	128331109	0.212 0.208	6.43E-01
rs10099034	128336520	0.236 0.221	1.28E-02
rs4871014	128340162	0.251 0.262	2.57E-02
rs716889	128345535	0.034 0.033	9.14E-01
rs2122835	128347495	0.299 0.310	3.65E-02
rs11777807	128349990	0.429 0.435	1.69E-01
rs1011387	128351093	0.049 0.047	6.34E-01
rs283709	128358094	0.107 0.107	8.76E-01
rs283710	128358773	0.266 0.280	4.15E-03
rs4871780	128360760	0.425 0.433	1.47E-01
rs185852	128362648	0.209 0.223	2.86E-03
rs412835	128364892	0.416 0.413	9.63E-01
rs6984900	128373451	0.181 0.164	2.18E-04
rs283718	128376264	0.419 0.422	5.61E-01
rs17450934	128378019	0.121 0.139	1.29E-06
rs283720	128379147	0.287 0.295	1.45E-01
rs283721	128379675	0.134 0.134	9.00E-01
rs2007197	128380741	0.149 0.133	2.36E-04
rs6984136	128389320	0.044 0.049	2.16E-02
rs445114	128392363	0.370 0.337	1.54E-09
rs620861	128404855	0.372 0.338	1.27E-10
rs377649	128406423	0.491 0.506	2.09E-02
rs424281	128408608	0.452 0.462	3.35E-01
rs16902104	128410090	0.146 0.165	1.20E-06
rs587948	128410862	0.400 0.371	4.44E-07
rs687279	128413806	0.296 0.284	7.21E-02
rs672888	128414645	0.397 0.379	3.32E-03
rs10098985	128424201	0.410 0.425	1.21E-02
rs13281615	128424800	0.412 0.396	1.02E-02
rs16902124	128426400	0.040 0.045	7.18E-03
rs13267780	128426999	0.248 0.225	2.01E-06
rs11782735	128435786	0.144 0.147	6.45E-01
rs9693995	128437695	0.449 0.431	4.93E-03
rs4143118	128446650	0.439 0.422	7.72E-03
rs2060775	128447808	0.230 0.212	3.52E-04
rs16902126	128451539	0.421 0.436	3.47E-02
rs11776260	128451670	0.146 0.149	6.24E-01
rs1562430	128457034	0.415 0.430	2.16E-02
rs731900	128459842	0.182 0.177	6.01E-01
rs6986543	128465498	0.352 0.360	1.42E-01
rs896324	128465694	0.087 0.094	1.29E-03
rs7820981	128469358	0.420 0.403	1.43E-02
rs1562871	128470954	0.189 0.192	3.56E-01
rs7844673	128472696	0.066 0.069	7.36E-01
rs13258742	128617860	0.155 0.156	7.85E-01
rs4407842	128619305	0.444 0.444	9.77E-01

rs6470530	128628172	0.432 0.438	4.02E-01
rs10098729	128633980	0.095 0.092	4.49E-01
rs4620244	128635324	0.149 0.153	4.08E-01
rs11783049	128636470	0.099 0.099	4.98E-01
rs6470532	128637541	0.454 0.445	2.02E-01
rs7386167	128637894	0.351 0.360	2.99E-01
rs4733655	128638038	0.294 0.296	4.02E-01
rs4313118	128640941	0.185 0.178	1.82E-01
rs10097522	128642092	0.168 0.162	5.81E-01
rs12543106	128642480	0.299 0.301	1.89E-01
rs4733739	128647197	0.203 0.200	9.22E-01
rs4733766	128650508	0.327 0.318	1.33E-01
rs7824074	128658004	0.294 0.300	4.79E-01
rs7815738	128660144	0.143 0.142	9.70E-03
rs6470541	128667482	0.442 0.446	7.49E-01
rs10091329	128670554	0.102 0.109	1.52E-01
rs4129666	128672591	0.104 0.099	1.91E-01
rs7818319	128678824	0.096 0.103	1.44E-01
rs4451272	128682912	0.268 0.271	5.98E-01
rs4733597	128686794	0.376 0.373	8.67E-01
rs7005795	128692821	0.448 0.447	8.83E-01
rs7388104	128693606	0.472 0.465	3.88E-01
rs4551310	128696142	0.417 0.430	6.21E-02
rs6470552	128697783	0.075 0.082	5.15E-02
rs4314620	128699771	0.169 0.167	7.23E-01
rs13268507	128706649	0.442 0.444	9.16E-01
rs13271223	128706798	0.494 0.492	9.40E-01
rs6989963	128712413	0.427 0.433	3.66E-01
rs4130120	128714137	0.088 0.089	3.05E-01
rs10956381	128723297	0.411 0.419	2.97E-01
rs4733879	128724583	0.477 0.475	1.57E-01
rs11995971	128726459	0.493 0.490	5.85E-01
rs7817632	128729278	0.382 0.377	3.12E-01
rs4733616	128731277	0.184 0.178	4.92E-01
rs6985681	128732901	0.364 0.366	7.53E-01
rs4562278	128733772	0.198 0.205	1.05E-01
rs4385433	128734662	0.369 0.374	6.16E-01
rs7841193	128746713	0.491 0.491	5.59E-01
rs4593503	128748168	0.125 0.123	7.69E-01
rs12543549	128750181	0.275 0.274	3.26E-01
rs4733658	128759811	0.245 0.248	7.02E-01
rs11774100	128762703	0.349 0.347	7.87E-01
rs10505504	128769526	0.359 0.358	7.70E-01
rs7845292	128771858	0.426 0.426	6.26E-01
rs7840975	128774343	0.067 0.068	8.24E-01
rs4733676	128775901	0.425 0.423	6.60E-01
rs6470563	128777752	0.107 0.112	5.66E-01
rs4733677	128781003	0.233 0.233	9.99E-01
rs12547643	128782355	0.350 0.346	7.67E-01
rs16902328	128783055	0.061 0.065	1.08E-02

rs9642880	128787250	0.465 0.466	9.93E-01
rs10505505	128808953	0.054 0.057	6.00E-01
rs4645943	128816653	0.047 0.047	9.14E-01
¹ controls cases ² 2df genotype score			

test

Supplementary Note

Studies

1. CGEMS Stage 1 -- Prostate, Lung, Colon and Ovarian (PLCO)

For PLCO study description, please refer to the Supplementary Methods from Yeager et al. 2007².

2. CGEMS Stage 2 – Follow-up #1

For Health Professionals Follow-up Study (HPFS), Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC), American Cancer Society Cancer Prevention Study II Nutrition Cohort (CPS-II), and CeRePP French Prostate Case-Control Study (CeRePP), please refer to the Supplementary Methods Thomas et al. 2008³.

3. Additional Studies included within Stage 3:

a. The Cancer Prostate in Sweden study (CAPS)

The Cancer Prostate in Sweden study (CAPS) is a large population-based Swedish case-control study⁴. Prostate cancer patients were identified and recruited from four of the six regional cancer registries in Sweden. Compulsory reporting of all malignant diseases diagnosed by both clinicians and pathologists ensures an essential complete cases ascertainment. Eligible case subjects were all men under 80 years of age with pathological or cytological verified adenocarcinoma of the prostate (ICD-10: C61), diagnosed between July, 2001 and October, 2003. Among 3,648 identified prostate cancer case subjects, 3,161 (87%) agreed to participate. DNA samples from blood and TNM stage, Gleason grade (biopsy), and PSA levels at diagnosis were available for 2,893 patients (91%). These case subjects were classified as having advanced disease if they met any of the following criteria: T3/4, N+, M+, Gleason score sum \geq 8, or PSA > 50 ng/ml; otherwise, they were classified as localized.

Control subjects were recruited concurrently with case subjects. They were randomly selected from the Swedish Population Registry, and frequency matched according to the expected age distribution of cases (groups of five-year interval) and geographical region. Control subjects with a history of prostate cancer were excluded from the study. A total of 3,153 controls were invited and 2,149 (68%) agreed to participate. DNA samples from blood were available for 1,781 control subjects (83%). Serum PSA level was measured for all control subjects but was not used as exclusion criteria.

b. The Multiethnic Cohort Study (MEC)

The Multiethnic Cohort Study (MEC) is a population-based prospective cohort study that was initiated between 1993 and 1996 and includes subjects mainly from five self-reported populations – African-Americans and Latinos primarily from California (mainly Los Angeles) and Native Hawaiians, Japanese-Americans, and European Americans primarily from Hawaii⁵. State driver's license files were the primary sources used to identify study subjects in Hawaii and California. Additionally, in Hawaii, state voter's registration files were used, and, in California, Health Care Financing Administration (HCFA) files were used to identify additional African American men.

All participants (n=215,251) returned a 26-page self-administered baseline questionnaire that obtained general demographic, medical and risk factor information. In the cohort, incident cancer cases are identified annually through cohort linkage to population-based cancer Surveillance, Epidemiology, and End Results (SEER) registries in Hawaii and Los Angeles County as well as to the California State cancer registry. Information on stage and grade of disease are also obtained through the SEER registries.

Blood sample collection in the MEC began in 1994 and targeted incident prostate cancer cases and a random sample of study participants to serve as controls for genetic analyses. This nested prostate cancer case-control study in the MEC consists of 3,000 invasive prostate cancer cases and 3,000 age-matched controls (in 5-year age groups), including 750 cases and 750 controls of ancestry, with the majority of predominantly European-descent. This study was approved by the Institutional Review Boards at the University of Southern California and at the University of Hawaii and informed consent was obtained from all study participants.

c. The European Prospective Investigation into Cancer and Nutrition (EPIC)

The European Prospective Investigation into Cancer and Nutrition (EPIC) has been established to investigate the relationship between diet, nutritional status, lifestyle and environmental factors and the incidence of cancer and other chronic diseases. It is a large ongoing prospective study that recruited 520,000 subjects, 370,000 women and 150,000 men, between years 1992-2000, in 23 regional centers in ten European countries: Denmark, France, Italy, Germany, The Netherlands, Norway, Spain, Sweden and the United Kingdom.

The study subjects' recruitment initiated in 1992. Detailed information on diet and lifestyle was collected using standardized questionnaires, anthropometric characteristics; blood pressure and pulse rate were measured at recruitment. Blood samples were also collected from approximately 400,000 of these subjects (37% males); plasma, serum, erythrocytes and leucocytes were aliquoted and stored in liquid nitrogen in bio repositories. Detailed EPIC recruitment procedure and collection of samples is described elsewhere⁶.

EPIC contributed 674 prostate cases and 1004 controls towards the CGEMS study. Cases and controls were matched based on study center, length of follow-up and age at blood collection (+/- 6 months), fasting status and time of the day of blood drawing (+/- 1 hour).

c. Johns Hopkins University (JHU)

The Johns Hopkins University (JHU) study population was described in detail elsewhere⁷. Briefly, the prostate cancer patients were men of European descent (by self report) who underwent radical prostatectomy for treatment of prostate cancer at The Johns Hopkins Hospital from January 1, 1999, through December 31, 2006. Normal seminal vesicle tissue that was obtained and frozen at the time of surgery was used to isolate DNA for genotyping of case patients. During the same time period, men undergoing screening for prostate cancer at The Johns Hopkins Hospital and The Johns Hopkins University Applied Physics Lab (Columbia, MD) were asked to participate as control subjects. Serum prostate-specific antigen (PSA) levels, digital rectal examination (DRE) results, and demographic information were available for these subjects. Men of European descent (by self report) met our inclusion criteria as control subjects for this study: normal DRE, PSA levels less than 4.0 ng/mL, and age older than 55 years.

d. CONOR

CONOR⁸ is a collaboration of six population-based cohorts in Norway, including approximately 180,000 participants of both sexes where information on the participants is collected with regular intervals. Core variables have been established through questionnaires, clinical measurements and venous blood sampling. Among the cohorts, extracted DNA for this study was available from two component cohorts (the HUNT and Tromsø studies), including approximately 45,000 men who are being followed up for prostate cancer incidence. Incident prostate cancer cases were ascertained by linkage to the Norwegian Cancer Registry, and controls were matched to the cases by age and study cohort. In this study, 606 cases and 622 controls were included in this analysis.

Supplementary Methods

Cancer Genetic Markers of Susceptibility (CGEMS) Prostate Cancer Follow-up Scan 2

The CGEMS cancer prostate whole-genome scan began by genotyping approximately 550,000 SNPs from the Illumina HumanHap550 assay in more than 1,100 prostate cancer patients and an equivalent number of controls from the PLCO Cancer Screening Trial. The materials and methods of the initial genome-wide scan have been reported² and are also available at <u>http://cgems.cancer.gov/data/</u>. Based on the analysis of the initial scan, a follow-up scan included 29,018 of the most promising SNPs to type in an additional 4,020 prostate cancer cases and 4,028 controls drawn from four additional studies using a custom Illumina iSelect[™] assay chip³. A second follow up, reported here, was performed with the primary purpose of fine mapping the most promising association results from the previous stages assaying 6,612 SNPs using a custom Illumina iSelect[™] assay chip in 9,135 prostate cancer cases and 10,286 controls. The component study design, SNP selection, assay performance, and analysis methods for this second follow-up scan are described below.

Follow-up Design

A total of 7,034 SNPs were chosen for second round follow-up genotyping and were chosen based on several criteria (Table A).

- A. Prostate follow-up #1 replication: The majority (51%) of SNPs were chosen for testing loci that were observed to be noteworthy in prostate follow-up #1 (reported elsewhere). For each of 27,157 SNPs genotyped in prostate follow-up #1³, a categorization was determined as follows:
 - <u>Region Type 0</u> were designated such that: SNPs denoted as being in this type of region were observed to have a -log₁₀ p value less than 3 from the trichotomous analysis. These SNPs were <u>not</u> taken into follow-up #2; the one exception was a SNP (rs4857841) that was included in the follow-up due to having a -log₁₀ p value from the dichotomous analysis less than 4, although the dichotomous p value did not meet the threshold.
 - <u>Region Type 1</u> were designated such that: The observed -log₁₀ p value from the trichotomous analysis was greater than 3 and the -log₁₀ p value from the dichotomous analysis was less than 10*(log₁₀ p value from the trichotomous analysis - 3.525). Region Type 1 also contains the exception mentioned in the description of region type 0 (rs4857841).

- <u>Region Type 2</u> were designated such that: The observed –log₁₀ p value from the dichotomous analysis was less than 5*(-log₁₀ p value from the trichotomous analysis - 4.5) and –log₁₀ p value from the dichotomous analysis was greater than 10*(–log₁₀ p value from the trichotomous analysis - 3.525)
- <u>Region Type 3</u> were designated such that: The observed –log₁₀ p value from the dichotomous analysis was greater than 5*(-log₁₀ p value from the trichotomous analysis - 4.5)

For each region type (1 - 3), the following strategy was used to optimally explore each region:

- Region 1 58 regions. Initial region bounds were defined by using the 0.2cM HapMap recombination data for the most significant SNP within the region. Regions were then tagged at an r² of 0.6 using HapMap CEU, with all significant SNPs (p < 10⁻³) serving as obligate-includes; final tags were chosen for follow-up #2 inclusion if they were observed to be correlated with an r² of ≥ 0.8 in HapMap^{9,10} CEU, YRI, JPT+CHB with the obligate-includes.
- Region 2 54 regions. Initial region bounds were defined by using the 0.2cM HapMap recombination data for the most significant SNP within the region. Regions were then tagged at an r^2 of 0.4 using HapMap CEU, with all significant SNPs (p < 10⁻³) serving as obligate-includes; final tags were chosen for follow-up #2 inclusion if they were observed to be correlated with an r^2 of ≥ 0.8 in HapMap^{9,10} CEU, YRI, JPT+CHB with the obligate-includes.
- Region 3 24 regions. Initial region bounds were defined by using the 0.2cM HapMap recombination data for the most significant SNP within the region. Regions were then tagged at a D' of 0.6 using HapMap CEU, with all significant SNPs (p < 10⁻³) serving as obligate-includes; final tags were chosen for follow-up #2 inclusion if they were observed to be correlated with an r² of ≥ 0.8 in HapMap^{9,10} CEU, YRI, JPT+CHB with the obligate-includes.

Tag SNP selection was performed using the GLU software package (<u>http://code.google.com/p/glu-genetics/</u>) using the HapMap CEU, JPT+CHB and YRI data.

B. Failed follow-up #1: From the prostate follow-up #1 Illumina iSelect, attempted assays for SNPs that were excluded from the design, failed *in silico* design, manufacturing or QC³. These include 369 SNPs located on Chromosome X that were incorrectly excluded from follow up #1 during the follow up design.

- C. Population substructure: 1,408 SNPs were chosen to monitor population stratification¹¹.
- D. 8q24 prostate regions: 313 SNPs were included to saturate a ~600kb region of chromosome 8q24 (chr8: 128,154,828 128816653) for numerous criteria, including:
 - a. Resequencing¹² of regions 1^{3,13} and 3¹²
 - b. SNPs included in prostate follow-up #1³
 - c. Fine mapping based on tag SNPs of several regions of interest
- E. Candidate genes/regions/SNPs: SNPs added based on candidate gene hypotheses or alternative analyses.

Hypothesis	Ordered	Manufactured	Passed QC
Follow-up #1 replication			
Region Type 1	120	111	110
Region Type 2	554	519	514
Region Type 3	2,920	2,777	2,752
Failed follow-up #1	1,695	1,591	1,588
Population Stratification	1,474	1,400	1,399
8q24	313	297	293
Other SNPs	27	23	23
Total*	7,033	6,652	6,613

Table A. Follow-up #2 SNPs

* Some SNPs were included based on several criteria. Thus the total number reflects the number of unique SNPs and will generally be less than the sum of each of the individual hypotheses.

This paper reports *only* on the SNPs tested in section above D (b. and c.) and explores Regions 2, the breast cancer region and bladder cancer regions (see text for description).

Genotype Quality control

Assessment of Call Rates

A total of 6,652 SNP genotype assays were attempted on the 22,081 DNA samples including 22,057 study samples and 24 CEPH samples using the Illumina iSelect. Samples that did not meet a 90% completion threshold were excluded from further analysis. See Table B for the number of samples from each cohort that was excluded based on these criteria. The remaining 20,707 DNA samples were retained for the subsequent analyses.

SNPs were excluded based on the following criteria: 1) The assay failed manufacturing at Illumina or 2) The assay exhibited low completion rate in the laboratory. A total of 38 SNPs failed to provide reliable genotype results due to either no call or low call rates (<90%; see Table A for distribution among SNP categories of inclusion).

Study	Attempted	Failed QC	Passed QC
PLCO	2,256	198	2,058
HPFS	1,296	30	1,266
ATBC	2,004	150	1,854
CPS-II (blood)	2,640	69	2,571
CPS-II (buccal)	1,104	156	948
CeRePP	2,160	96	2,064
CAPS	4,200	459	3,741
MEC	1,536	44	1,492
EPIC	1,726	16	1,710
JHU	1,779	102	1,677
CONOR	1,356	30	1,326
Total	22,057	1,350	20,707

Table B. Samples genotyped

Table C. Subject counts by study that passed sample-level genotype QC

					Cases	
	QC/			Non-		
	Unknown			aggressive	Aggressive	Unknown
Study	phenotype	Controls	All	tumor	tumor	stage tumor
PLCO	38	931	975	425	550	0
HPFS	0	598	611	427	115	69
ATBC	0	870	907	527	245	135
CPS-II (blood)	64	1,208	1,212	654	427	131
CPS-II (buccal)	0	448	448	7	410	31
CeRePP	0	970	1,016	238	778	0
CAPS	0	1,375	2,226	999	1,190	37
MEC	0	731	725	365	239	121
EPIC	0	995	685	462	223	0
JHU	1	600	1,002	495	504	3
CONOR	0	670	609	0	0	609
Total	103	9,396	10,416	4,599	4,681	1,136

Assessment of unique subjects

After removal of sample and locus data due to low completion rates, genotypes for each sample that appeared in duplicate were merged to form consensus genotypes for each study subject; for any observed genotype discordances were henceforth considered as missing observations. Table C contains the detailed numbers for each study of the distribution of subjects by phenotype.

Analysis of duplicate DNA samples

The genotype concordance/reproducibility rate for SNP assays was evaluated using the 2,976 pairs of known duplicated DNA samples. These pairs of samples were separate aliquots from the same DNA preparation and all met quality control criteria requested for the other samples, thereby, providing reliable data for comparison. An average discordance rate of 0.03% was observed. No SNPs or samples were excluded from further analysis as a result of this analysis of *known* duplicates. Table D shows the individual study discordance rates in more detail.

							Discordan	ce Rate
				Discordant	Concordant	Total		
Study	Pairs	Assays	Subjects	Genotypes	Genotypes	Comparisons	Mean	Max
CPS-II (blood)	355	109	35	2,166	2,237,370	2,239,536	0.100%	2.50%
CPS-II (buccal)	83	84	36	8	506,081	506,089	0.002%	0.02%
ATBC	251	114	43	830	1,575,327	1,576,157	0.050%	1.00%
CeRePP	315	113	39	861	1,971,908	1,972,769	0.040%	1.00%
HPFS	134	87	34	74	859,437	859,511	0.009%	0.80%
CONOR	137	61	20	36	886,080	886,116	0.004%	0.50%
MEC	33	66	33	51	208,678	208,729	0.020%	0.40%
JHU	249	112	42	492	1,556,024	1,556,516	0.030%	0.40%
EPIC	24	48	27	33	133,611	133,644	0.020%	0.50%
CAPS	1,075	201	65	1,531	6,535,579	6,537,110	0.020%	0.90%
PLCO	320	123	45	348	2,011,163	2,011,511	0.020%	0.60%
Total	2,976	1,118	419	6,430	18,481,258	18,487,688	0.030%	2.50%

Table D. Intra-cohort sample genotype concordance

Concordance analysis among all possible pairs of subjects also revealed unexpected pairs with nearly identical genotypes. An individual assayed multiple times (N) will generate N(N-1)/2 pairs. For example, in CONOR there are 3 CEPH subject repeated 5 times, 1 CEPH sample repeated 14 times, and 16 study samples in duplicate. This results in 137 duplicate pairs, but comprises only 61 assays and 20 individuals.

Within-study pairs are likely to reflect sample-handling errors, while inter-study duplicates are possibly monozygotic twins or, more likely, individuals enrolled in more than one study. 27 pairs of such subjects were found and were verified to have nearly identical age and phenotypes. Table E shows the discordance rates per-study for unexpected duplicate pairs. Although a vast minority if the total data set, one or both subjects from each pair was excluded to prevent repeated measures within the analysis.

			Genotype Counts			Discordanc	e Rate
			Discordant	Concordant	Total		
Study1	Study2	Pairs	Genotypes	Genotypes	Comparisons	Mean	Max
CPSII-BLOOD	HPFS	5	9	31466	31475	0.029%	0.048%
CPSII-BUCCAL	HPFS	1	1	6065	6066	0.016%	0.016%
EPIC	EPIC	3	2	19094	19096	0.010%	0.031%
PLCO	CPSII-BLOOD	5	64	30551	30615	0.217%	1.053%
PLCO	CPSII-BUCCAL	3	0	18162	18162	0.000%	0.000%
PLCO	HPFS	3	3	18737	18740	0.016%	0.032%
PLCO	JHU	1	0	6205	6205	0.000%	0.000%
CAPS	EPIC-Sweden	6	9	36298	36307	0.025%	0.033%
Total		27	88	166578	166666	0.053%	1.053%

 Table E. Inter-cohort sample genotype concordance

Hardy –Weinberg Proportions in control DNA

Genotype data were tested for deviation from Hardy-Weinberg proportions using an exact test¹⁴. The analysis was conducted in each cohort's control group. Significant deviations were observed for an average of 5.44% for control group and 5.77% for case group of all SNPs at the level of p<0.05, and 0.62% for control group and 0.61% for case group at p<0.001. Table F contains the proportion of SNPs per study that deviate from Hardy-Weinberg proportions. None of these SNPs were excluded from analysis since significant departures from the expected proportions are not unexpected when fine-mapping previously associated regions. Genotype tests for association applied to such data are valid in the presence of departure from Hardy-Weinberg proportions, although with potentially reduced power when these deviations are due to systematic genotyping errors with comparable effects among cases and controls.

	Cases		Cont	rols
Study	P<0.001	P<0.05	P<0.001	P<0.05
ATBC	0.7888%	5.6368%	0.6245%	4.6343%
CONOR	0.5657%	5.5762%	0.6304%	5.1398%
CPSII-BLOOD	0.9241%	5.7096%	1.0561%	5.3630%
CPSII-BUCCAL	0.3319%	4.9286%	0.4481%	5.5758%
EPIC	0.3897%	5.6827%	0.5520%	5.6178%
CeRePP	0.5578%	5.5291%	0.5578%	5.2338%
HPFS	0.5210%	4.5751%	0.6024%	4.5751%
JHU	0.4884%	5.8613%	0.3419%	4.6076%
MEC	1.0374%	6.7841%	1.0868%	7.5086%
PLCO	0.5230%	7.2234%	0.4576%	6.7331%
CAPS	0.5967%	6.0501%	0.4973%	4.8898%

Table F. SNPs exhibiting deviation from Hardy-Weinberg Proportions

Subject exclusions

Subjects with valid genotypes were excluded from analysis based on the following (summarized in Table G):

- 1. For pairs of subjects with unanticipated duplicate genotype data, the decision as to which subject to retain, if any, was based on the following criteria:
 - a. If both subjects were found in the same study, both were excluded unless other evidence could be found to convincingly determine the identity of one (such as another known duplicate)
 - b. Any subject from an earlier phase of the scan was retained over that of a new subject in follow-up #2; and
 - c. If two subjects were first seen in follow #2, the one with higher genotyping completion was retained for analysis.
- 2. Self-reported race, where only subjects that self-reported as being of European ancestry were retained, regardless of their imputed race.
- 3. Imputed race, where only subject with imputed European background were retained, regardless of their self-reported race.
- 4. Sparse groups. Only 2 PLCO subjects were available from one study center and were excluded. Also, only 5 non-aggressive cases were part of the CPS-II buccal group, so they too were also excluded.
- 5. Missing covariates. These subjects were missing one or more covariates necessary for association analysis.

	Inter-study	Non-European	Sparse	Missing	PI	
Study	Duplicates	Origin*	Group	Covariates	Exclude	Total
PLCO	0	5	2	36	1	44
CPS-II	8	28	0	31	33	100
ATBC	0	3	0	0	0	3
CeRePP	0	36	0	0	0	36
HPFS	9	16	0	0	0	25
EPIC	0	6	0	0	0	6
MEC	0	87	0	0	0	87
CONOR	0	11	0	0	0	11
JHU	1	160	0	1	0	162
CAPS	0	20	0	0	0	20
Total	18	372	2	68	34	494

Table G. Excluded Subjects

* Non-European origin is defined as having less than 0.80 estimated European admixture as estimated using the STRUCTURE program using with the HapMap Phase II populations.

After the exclusion of subjects based on various criteria, the total number of cases and controls for association analyses were 10,286 and 9,135, respectively. Table H contains the final subject counts per study for each phenotypic state.

		Cases				
		All	Non-aggressive	Aggressive	Unknown	
Study	Controls	Cases	tumor	tumor	stage tumor	
PLCO	927	973	425	548	0	
CPS-II	1,644	1,636	651	826	159	
ATBC	868	906	527	244	135	
CeRePP	952	998	235	763	0	
HPFS	589	595	417	109	69	
EPIC	991	683	462	221	0	
CONOR	662	606	0	0	0	
MEC	687	682	341	226	115	
JHU	451	990	489	498	3	
CAPS	1,364	2,217	1,184	996	37	
Total	9,135	10,286	4,731	4,431	518	

Table H. Final subject counts for association analysis

Admixture estimation

1,400 SNPs were used for the detection of population structure. In an attempt to maximize genetic homogeneity, subjects with significant estimated non-European ancestry were excluded from analysis. This estimation was done using the STRUCTURE program by merging the genotypes from the follow-up studies with those of the reference HapMap populations. The number of clusters (the "k" parameter) was set to three and the CEU, YRI and JPT+CHB samples were each specified to a different cluster schematically representing populations of European, African and Asian origin, respectively. The origin of the CGEMS samples was left unspecified. A total of 372 subjects (1.8%) were estimated to have less than 80% European ancestry and were excluded from analysis (Figure A). All individuals that had at greater than 80% European ancestry were retained for the replication study, regardless of their reported origin (Table I).

	_	Imputed race						
	_		Admixed	Admixed		Asian/	CEU/	
Study	Self-Reported Race	CEU	CEU	YRI	Asian	CEU	YRI	YRI
ATBC	Caucasian	1,774	1			2		
CONOR	Caucasian	1,268	5			6		
CPSII	African-American	2					9	2
	Asian	1			2			
	Caucasian	3283	5			1	2	
	Caucasian/Hispanic		1					
	Hispanic	2	1			4		
	Other					1		
	None	64						
EPIC	Caucasian	1674			1	3	2	
FPCC	Caucasian	1950	8		1	2	20	5
HPFS	Caucasian	1129	3			2		
	Other	64			2	1	8	
JHU	African-American			10			65	73
	Caucasian	1443	2			5	4	1
MEC	Caucasian	1369	13		3	63	8	
PLCO	Caucasian	1904	1			2	1	
	Other	35				1		
CAPS	Caucasian	3581	2		1	14	2	1
Total		19543	42	10	10	107	121	82

Table I. Self-reported and imputed race per study

Figure A. Admixture analysis using 1,400 SNPs¹¹

Principal components analyses

Principal components analyses were performed using the 1,400 SNPs included for population stratification. These results were based on the remaining subjects after removal of the admixed individuals as detected above.

A Wilcoxon rank test was performed to check correlations with the case/control status for the top 5 eigenvectors. The result is summarized in Table J below. PC1 in JHU and top 3 PCs in CAPS show significant differences between cases and controls. These are potential adjustors for association test.

Study	PC1	PC2	PC3	PC4	PC5
ATBC	6.90E-01	2.22E-01	4.93E-01	1.93E-01	6.56E-01
CONOR	3.42E-01	1.34E-01	4.97E-01	7.76E-01	2.87E-01
CPSII	6.81E-01	1.39E-01	7.01E-01	8.32E-01	3.50E-01
CeRePP	8.49E-01	9.95E-01	2.75E-01	8.98E-01	7.65E-01
HPFS	3.87E-01	7.66E-01	9.22E-01	9.58E-01	6.20E-01
JHU	7.92E-02	8.58E-01	4.82E-01	9.75E-01	5.70E-01
MEC	5.15E-01	9.50E-01	5.44E-01	8.30E-01	7.17E-01
PLCO	8.22E-01	1.32E-01	9.73E-01	8.09E-01	5.30E-01
CAPS	3.32E-05	4.15E-03	7.48E-02	3.06E-01	3.43E-01
EPIC	5.09E-01	6.02E-01	6.76E-01	1.86E-01	1.12E-01

Table J. Wilcoxon Rank test for association between phenotype and each of the top 5 principle components (PC1-5)

Association Analysis

Single-SNP logistic regression tests for association with comparing prostate cancer cases controls conducted to were using the GLU software package (http://code.google.com/p/glu-genetics/). Models was adjusted for study, study center (when applicable), and for significant principal components per study (see below). A polytomous, non-ordinal model for comparisons between non-aggressive and aggressive cases vs. controls was similarly performed. Genotype effects were modeled using both an unconstrained genotype effects (two parameters, one for heterozygote genotypes and another for non-reference homozygote genotypes), as well as a "trend" test which assumes a multiplicative relationship between the heterozygote and nonreference homozygote odds ratios. A score test was performed on all genetic parameters in each model to determine statistical significance, with two degrees of freedom for unconstrained genotype effects and one degree of freedom for trend effects.

Genotype concordance

In order to reduce the likelihood that the association results that we obtained from regions 2 and 4 were due to genotyping artifacts, we ran TaqMan assays on a subset of individuals from the CPSII (n = 379) and PLCO (n = 621) studies for the 2 most highly-associated SNPs from each region. Table K shows the concordance rates per locus and study between TaqMan and iSelect genotypes.

genotypes			
locus	region	CPSII (n=379)	PLCO (n=601)
rs4871008	2	0.9973	0.9916
rs7841060	2	0.9973	0.9983
rs445114	4	0.9918	0.9932
rs620861	4	0.9947	0.9933
	average	0.9953	0.9941

Table K. Concordance between TaqMan and iSelectgenotypes

REFERENCES

- 1. Witte, J.S. Multiple prostate cancer risk variants on 8q24. *Nat Genet* **39**, 579-80 (2007).
- 2. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. *Nat Genet* **39**, 645-9 (2007).
- 3. Thomas, G. et al. Multiple loci identified in a genome-wide association study of prostate cancer. *Nat Genet* (2008).
- 4. Zheng, S.L. et al. Cumulative association of five genetic variants with prostate cancer. *N Engl J Med* **358**, 910-9 (2008).
- 5. Kolonel, L.N. et al. A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. *Am J Epidemiol* **151**, 346-57 (2000).
- Riboli, E. et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. *Public Health Nutr* 5, 1113-24 (2002).
- 7. Zheng, S.L. et al. Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. *J Natl Cancer Inst* **99**, 1525-33 (2007).
- 8. Naess, O. et al. Cohort profile: cohort of Norway (CONOR). *Int J Epidemiol* **37**, 481-5 (2008).
- 9. Project, T.I.H. The International HapMap Project. *Nature* **426**, 789-96 (2003).
- 10. Consortium, T.I.H. A haplotype map of the human genome. *Nature* **437**, 1299-320 (2005).
- 11. Yu, K. et al. Population substructure and control selection in genome-wide association studies. *PLoS ONE* **3**, e2551 (2008).
- 12. Yeager, M. et al. Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers. *Hum Genet* **124**, 161-70 (2008).
- 13. Amundadottir, L.T. et al. A common variant associated with prostate cancer in European and African populations. *Nat Genet* **38**, 652-8 (2006).
- 14. Wigginton, J.E., Cutler, D.J. & Abecasis, G.R. A note on exact tests of Hardy-Weinberg equilibrium. *Am J Hum Genet* **76**, 887-93 (2005).