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Text S1 - Parameter sensitivity

Parameter sensitivity provides a measure for the impact of changes in input parameters on a model’s
overall behavior in terms of e.g. simulation results. It is therefore often used as a basis for parameter
fitting experiments, e.g. to determine appropriate orders of magnitude for individual parameter variations,
to filter those parameters that have no significant impact and are therefore less relevant for parameter
fitting.

In our study, we assume the behavior of our model to be best represented by the dynamics of nuclear
β-catenin (βnuc in the model), as they are also the focus of our experimental observations. For each
parameter, we ran individual tests to determine the impact of changes in its value on simulation results.
Our study applies to the initial parameter set (set 1) in Table 3 of the main paper. To measure the impact
of a change, we compared the simulation results after modification to those with the initial parameter
values. Therefore, we defined the difference between two trajectories as the Eucledian distance of value
pairs at five time points (0.5, 1, 2, 8, and 12 hours) characterize β-catenin dynamics. As our study bases
on stochastic simulation, runs for single parameter sets are replicated and trajectories of mean values are
used for comparison. The number of runs is chosen, such that 95% of confidence for an interval of 5% at
the five time points used for comparison is obtained.

The results are given in Table S1. With a precision of 5%, they show for each parameter the change
of its value that is at least required for a deviation of 10% (see Formal Description below).

Table S1. Results of the sensitivity analysis.

parameter change parameter change
nβnuc 0.0001 kβin 0.18
nAxin 0.016 kA→Ap 0.23

nAxinP 0.018 kW↓ 0.25
kβ↑ 0.019 kAp⇒A 0.28

nWnt 0.036 kAp↓ 0.37
kβ⇓ 0.04 kβout 0.46
kAp→A 0.042 kA↑ 0.58
kA↓ 0.072 kβ↓ 0.91

nβcyt 0.098

Formal Description The sensitivity analysis algorithm returns a set of parameters and their sensitiv-
ity, according to:

Sens(CB) = {(p,min(SensP (CB , p)) : p ∈ P} (1)

with P being the set of parameters under investigation and CB being a reference parameter configura-
tion comprising the standard values for each parameter, determined in previous experiments. min(S)
calculates the minimum of a set S of values and is applied to SensP (CB , p), which contains the relative
change of a parameter p required to get a relative deviation of 10% in the simulation analysis results.
This is illustrated in the following formula:

SensP (CB , p) =
{
|argp(CB)− argp(Cp)|

argp(CB)
:
|R(CB)−R(Cp)|

R(CB)
> 0.1

}
(2)

with CP being a parameter configuration, which differs from CB only in the value of parameter p. argp(C)
returns the value of parameter p of a given configuration C. R(C) returns the simulation analysis results
(i.e., the results obtained simulating a configuration and analyzing its output) of configuration C. It
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basically repeats simulation runs and calculates the arithmetic mean of their results, to gain a given
confidence:

R(C) = Σn
i=1

Xi(C)
n

(3)

with Xi(C) being the simulation result of run i with configuration C. The confidence is gained by a
two stage approach [1] (page 71), where an initial sample of simulation runs is executed and the overall
amount of required runs n for the given configuration is calculated by:

n =
(
Z0.95 · SX

e ·X

)2

(4)

with Z0.95 being the 0.95-quantil of the standard normal distribution (to achieve 95 percent confidence), X
being the sample mean of the simulation run results, SX being the according sample standard deviation,
and e being the allowed, relative error tolerance (which we set to 0.05). Note, that the focus of this
approach is on achieving a given confidence in the simulation results, not in executing a given count of
replication. Therefore, and due to the fact that we calculate the required amount of replications for each
of the many executed model configuration, presenting all calculated replication counts is not necessary
nor feasible for this paper.

The simulation results in equation 3 are calculated by Xi(C) = ED(Y D(C)
i , Y W ), where Y D(C)

i =
y

D(C)
i,0 , ..., y

D(C)
i,m is the trajectory generated by executing a simulation run of configuration C and Y W =

yW
0 , ..., yW

m being the reference trajectory we achieved in our wet-lab experiments. We compared both
trajectories by calculating the euclidean distance [2] (page 94):

ED(Y D(C), Y W ) =
√

Σm
j=0(yD(C)

i,j − yW
i )2 (5)

For the comparison, we had to adapt the experimental data, as it was based on concentrations, while the
trajectories created by simulation where based on molecule numbers. Hence, we calculated the molecule
numbers of the sub sequent observation points by multiplying the initial molecule count with the ratio
between initial concentration and the concentration at the point:

yW
i = yW

0 ∗ ci/c0 (6)

The concrete value are depicted in Table S2.

Table S2. Reference trajectory with molecule numbers.

time (h) molecule number
0 5345

0.5 7430
1 7857
2 5452
8 8178
12 9193
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