Web-Based Supplementary Materials for "Competing Risks Regression for Stratified Data" by Zhou, B., Latouche, A., Rocha, V., & Fine, J.

Web Appendix A: Assumptions

The following list of conditions are assumed throughout the paper:

- 1. $\int_0^\tau \lambda_{k0}(t)dt < \infty.$
- 2. $\mathbf{Z}_{lki}(\cdot)(k=1,\dots,s;i=1,\dots,n_k)$ have bounded total variations, i.e. for lth component of $\mathbf{Z}_{ki}, l=1,\dots,m, |\mathbf{Z}_{lki}(0)| + \int_0^{\tau} |d\mathbf{Z}_{lki}(t)| \leq M$, where M is a constant.
- 3. $\{N_{ki}(\cdot), Y_{ki}(\cdot), \mathbf{Z}_{ki}(\cdot), i = 1, \dots, n_k\}_{k=1,\dots,s}$ are independently distributed; for regular stratified data, $\{N_{ki}(\cdot), Y_{ki}(\cdot), \mathbf{Z}_{ki}(\cdot)\}_{i=1,\dots,n_k}$ are independently and identically distributed for each stratum k.
- 4. regularity conditions for different regimes:
 - For regular stratified data, there exists a neighborhood \mathcal{B} of $\boldsymbol{\beta}_0$ and scalar, vector and matrix functions $s_k^{(0)}$, $\boldsymbol{s}_k^{(1)}$ and $\boldsymbol{s}_k^{(2)}$ defined on $\mathcal{B} \times [0, \tau]$ such that for p = 0, 1, 2, $\sup_{t \in [0, \tau], \boldsymbol{\beta} \in \mathcal{B}} \|\boldsymbol{S}_k^{(p)}(\boldsymbol{\beta}, t) \boldsymbol{s}_k^{(p)}(\boldsymbol{\beta}, t)\| \xrightarrow{p} 0. \text{ Define } \boldsymbol{e}_k = \boldsymbol{s}_k^{(1)}/s_k^{(0)} \text{ and } \boldsymbol{v}_k = \boldsymbol{s}_k^{(2)}/s_k^{(0)} \boldsymbol{e}_k^{\otimes 2}.$

The matrix $\Sigma_{k\tau} = \int_0^{\tau} v_k(\boldsymbol{\beta}_0, t) s^{(0)}(\boldsymbol{\beta}_0, t) \lambda_{0k}(t) dt$ is positive definite.

• For highly stratified data, both

$$I \equiv \lim_{s \to \infty} s^{-1} \sum_{k=1}^{s} E \left[\sum_{i=1}^{n_k} \int_0^{\tau} \{ \mathbf{Z}_{ki}(u) - \overline{\mathbf{Z}}_k(\boldsymbol{\beta}_0, u) \}^{\otimes 2} Y_{ki}^*(u) e^{\boldsymbol{\beta}_0' \mathbf{Z}_{ki}(u)} \frac{d\overline{N}_k(u)}{S_k^{(0)}(\boldsymbol{\beta}_0, u)} \right]$$

for censoring complete case and

$$\widetilde{\boldsymbol{I}} \equiv \lim_{s \to \infty} s^{-1} \sum_{k=1}^{s} \operatorname{E} \left[\sum_{i=1}^{n_k} \int_0^{\tau} \{ \mathbf{Z}_{ki}(u) - \widetilde{\mathbf{Z}}_k(\boldsymbol{\beta}_0, u) \}^{\otimes 2} w_{ki}(u) Y_{ki}(u) e^{\boldsymbol{\beta}_0' \mathbf{Z}_{ki}(u)} \frac{d\overline{N}_k(u)}{\widetilde{\mathbf{S}}_k^{(0)}(\boldsymbol{\beta}_0, u)} \right]$$

for right censored case are positive definite.

Web Appendix B: Consistency of $\widehat{\beta}$ for Censoring Complete Highly Stratified Data

Let $C(\boldsymbol{\beta},t)$ be the logarithm of the partial likelihood evaluated at time t, so we have

$$C(\boldsymbol{\beta},t) = \sum_{k=1}^{s} \left[\sum_{i=1}^{n_k} \int_0^t \boldsymbol{\beta}' \mathbf{Z}_{ki}(u) dN_{ki}(u) - \int_0^t \left\{ \log \sum_{i'=1}^{n_k} Y_{ki'}^*(u) e^{\boldsymbol{\beta}' \mathbf{Z}_{ki'}(u)} \right\} d\overline{N}_k(u) \right],$$

where $\overline{N}_k = \sum_{i=0}^{n_k} N_{ki}$ and n_k is finite. We also have $C(\boldsymbol{\beta}, \tau) = \log L(\boldsymbol{\beta})$. $\widehat{\boldsymbol{\beta}}$ is the solution to the estimating equation $(\partial/\partial \boldsymbol{\beta})C(\boldsymbol{\beta}, \tau) = 0$.

Consider the process

$$X(\boldsymbol{\beta},t) = s^{-1}(C(\boldsymbol{\beta},t) - C(\boldsymbol{\beta}_{0},t))$$

$$= s^{-1} \sum_{k=1}^{s} \left[\sum_{i=1}^{n_{k}} \int_{0}^{t} (\boldsymbol{\beta} - \boldsymbol{\beta}_{0})' \mathbf{Z}_{ki}(u) dN_{ki}(u) - \int_{0}^{t} \log \left\{ \frac{\sum_{i'=1}^{n_{k}} Y_{ki'}^{*}(u) e^{\boldsymbol{\beta}' \mathbf{Z}_{ki'}(u)}}{\sum_{i'=1}^{n_{k}} Y_{ki'}^{*}(u) e^{\boldsymbol{\beta}'_{0} \mathbf{Z}_{ki'}(u)}} \right\} d\overline{N}_{k}(u) \right]$$

$$= s^{-1} \sum_{k=1}^{s} \left[\sum_{i=1}^{n_{k}} \int_{0}^{t} (\boldsymbol{\beta} - \boldsymbol{\beta}_{0})' \mathbf{Z}_{ki}(u) dN_{ki}(u) - \int_{0}^{t} \log \left\{ \frac{S_{k}^{(0)}(\boldsymbol{\beta}, u)}{S_{k}^{(0)}(\boldsymbol{\beta}_{0}, u)} \right\} d\overline{N}_{k}(u) \right].$$

where $\mathbf{S}_k^{(p)}(\boldsymbol{\beta},t) = n_k^{-1} \sum_{i=1}^{n_k} Y_{ki}^*(t) \mathbf{Z}_{ki}(t)^{\otimes p} e^{\boldsymbol{\beta}' \mathbf{Z}_{ki}(t)}, \ p = 0, 1, 2.$ Define

$$X_k(\boldsymbol{\beta},t) = \sum_{i=1}^{n_k} \int_0^t (\boldsymbol{\beta} - \boldsymbol{\beta}_0)' \mathbf{Z}_{ki}(u) dN_{ki}(u) - \int_0^t \log \left\{ \frac{S_k^{(0)}(\boldsymbol{\beta},u)}{S_k^{(0)}(\boldsymbol{\beta}_0,u)} \right\} d\overline{N}_k(u), \qquad k = 1,\ldots, s.$$

Then, $X(\boldsymbol{\beta},t) = s^{-1} \sum_{i=1}^{s} X_k(\boldsymbol{\beta},t)$. For convenience, we suppress t at $t = \tau$ in these expressions. Hence, $X_k(\boldsymbol{\beta},\tau) = X_k(\boldsymbol{\beta})$, and $X(\boldsymbol{\beta},\tau) = X(\boldsymbol{\beta})$.

Suppose
$$\mathcal{X}_k(\boldsymbol{\beta}) = \mathbb{E}\left\{X_k(\boldsymbol{\beta})\right\}$$
 and $\mathcal{X}(\boldsymbol{\beta}) = \lim_{s \to \infty} s^{-1} \sum_{k=1}^s \mathcal{X}_k(\boldsymbol{\beta})$.

The conditions 1 and 2 lead to the fact that $d\overline{N}_k(t)$ and $S_k^{(0)}(\beta, t)$ have bounded variation (Lin et al. , 2000). This result and the finiteness of strata sizes n_k 's can be used to show that $X_k(\beta), k = 1, \ldots, s$ are bounded. As a result, $s^{-1} \sum_{k=1}^s \mathrm{E}\{|X_k(\beta) - \mathcal{X}_k(\beta)|^2\} \le \max_{k \in \{1,\ldots,s\}} \mathrm{E}\{|X_k(\beta) - \mathcal{X}_k(\beta)|^2\}$ is bounded. Hence, $s^{-2} \sum_{k=1}^s \mathrm{E}\{|X_k(\beta) - \mathcal{X}_k(\beta)|^2\} \to 0$. In addition, the condition 3 guarantees the independence of $X_k(\beta)$'s. Therefore, By Kolmogorov Strong Law of Large Numbers , $X(\beta)$ converges to $\mathcal{X}(\beta)$ almost surely, for all $\beta \in \mathcal{B}$, where \mathcal{B} is any compact neighborhood of β_0 (Sen and Singer, 1993, chap.2).

 $X_k(\boldsymbol{\beta})$ is random concave by Anderson and Gill (1982). Therefore, $X(\boldsymbol{\beta})$ is a random concave function since it is just a sum of random concave functions. This implies the uniform convergence of $X(\boldsymbol{\beta})$ to $\mathcal{X}(\boldsymbol{\beta})$ on compact subspaces $\boldsymbol{\beta} \in \mathcal{B}$. That is, $\sup_{\boldsymbol{\beta} \in \mathcal{B}} |X(\boldsymbol{\beta}) - \mathcal{X}(\boldsymbol{\beta})| \to_p$ 0 (Rockafellar, 1970, Theorem 10.8).

Now by the boundedness conditions and the independence of range of integral on β , we can evaluate the first and second derivatives of $\mathcal{X}(\beta)$ by taking partial derivatives inside the integral and expectation. Clearly, the first derivative evaluated at β_0 is $\frac{\partial \mathcal{X}(\beta)}{\partial \beta}|_{\beta=\beta_0} = 0$, since the expected value of the score function $(\partial/\partial\beta)C(\beta,\tau)$ equals to 0 at $\beta=\beta_0$. Furthermore,

$$\frac{\partial^2 \mathcal{X}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}^2} = -\lim_{s \to \infty} s^{-1} \sum_{k=1}^s \mathbb{E} \left[\sum_{i=1}^{n_k} \int_0^{\tau} \{ \mathbf{Z}_{ki}(u) - \overline{\mathbf{Z}}_k(\boldsymbol{\beta}, u) \}^{\otimes 2} Y_{ki}^*(u) e^{\boldsymbol{\beta}' \mathbf{Z}_{ki}(u)} \frac{d\overline{N}_k(u)}{S_k^{(0)}(\boldsymbol{\beta}, u)} \right], \quad (A.1)$$

which equals to \boldsymbol{I} when evaluated at $\boldsymbol{\beta}_0$. By condition 4, (A.1) is negative definite. Therefore, $\mathcal{X}(\boldsymbol{\beta})$ is a concave function of $\boldsymbol{\beta}$ with a unique maximum at $\boldsymbol{\beta}_0$. Thus, the maximizer of $X(\boldsymbol{\beta}): \widehat{\boldsymbol{\beta}}$ converges in probability to the unique maximum of $\mathcal{X}(\boldsymbol{\beta}): \boldsymbol{\beta}_0$ (Anderson and Gill, 1982, Corollary II.2).

Web Appendix C.1: Consistency of $\widehat{\beta}$ for Right Censored Highly Stratified Data

When the highly stratified data are right censored, we show the consistency of $\widehat{\beta}$ by modifying the proof in Appendix A. Note that the risk process $Y^*(t) = I(C \ge t)Y(t)$ is replaced by $\widehat{Y}(t) = \widehat{w}(t)Y(t)$, where $\widehat{w}(t) = I(C \ge T \land t)\widehat{G}(t)/\widehat{G}(X \land t)$. Thus, we have

$$\widetilde{C}(\boldsymbol{\beta},t) = \sum_{k=1}^{s} \left[\sum_{i=1}^{n_k} \int_0^t \boldsymbol{\beta}' \mathbf{Z}_{ki}(u) dN_{ki}(u) - \int_0^t \left\{ \log \sum_{i'=1}^{n_k} \widehat{w}_{ki'}(u) Y_{ki'}(t) e^{\boldsymbol{\beta}' \mathbf{Z}_{ki'}(u)} \right\} d\overline{N}_k(u) \right].$$

Since
$$\widehat{w}(t) \to w(t) = I(C \ge T \land t)G(t)/G(X \land t)$$
, where $G(t) = Pr(C_{ki} \ge T)$, $k = 1, ..., s$; $i = 1, ..., s$

 $1, \ldots, n_k$, we further have

$$\widetilde{C}(\boldsymbol{\beta}, t) = \sum_{k=1}^{s} \left[\sum_{i=1}^{n_k} \int_0^t \boldsymbol{\beta}' \mathbf{Z}_{ki}(u) dN_{ki}(u) - \int_0^t \left\{ \log \sum_{i'=1}^{n_k} w_{ki'}(u) Y_{ki'}(u) e^{\boldsymbol{\beta}' \mathbf{Z}_{ki'}(u)} \right\} d\overline{N}_k(u) \right] + o_p(1).$$

Hence,

$$\widetilde{X}(\boldsymbol{\beta},t)$$

$$=s^{-1}(\widetilde{C}(\boldsymbol{\beta},t)-\widetilde{C}(\boldsymbol{\beta}_0,t))$$

$$=s^{-1}\sum_{i=1}^{s}\sum_{k=1}^{n_k}\int_{t}^{t}(\boldsymbol{\beta}_{i,k}(\boldsymbol{\beta}_{i,k}(t)))dt$$

$$=s^{-1}\sum_{i=1}^{s}\sum_{k=1}^{n_k}\sum_{k=1}^{n_k}w_{ki'}(u)Y_{ki'}(u)e^{\boldsymbol{\beta}'\boldsymbol{Z}}$$

$$= s^{-1} \sum_{k=1}^{s} \left[\sum_{i=1}^{n_{k}} \int_{0}^{t} (\boldsymbol{\beta} - \boldsymbol{\beta}_{0})' \mathbf{Z}_{ki}(u) dN_{ki}(u) - \int_{0}^{t} \log \left\{ \frac{\sum_{i'=1}^{n_{k}} w_{ki'}(u) Y_{ki'}(u) e^{\boldsymbol{\beta}' \mathbf{Z}_{ki'}(u)}}{\sum_{i'=1}^{n_{k}} w_{ki'}(u) Y_{ki'}(u) e^{\boldsymbol{\beta}'_{0} \mathbf{Z}_{ki'}(u)}} \right\} d\overline{N}_{k}(u) \right] + o_{p}(1)$$

$$= s^{-1} \sum_{k=1}^{s} \left[\sum_{i=1}^{n_{k}} \int_{0}^{t} (\boldsymbol{\beta} - \boldsymbol{\beta}_{0})' \mathbf{Z}_{ki}(u) dN_{ki}(u) - \int_{0}^{t} \log \left\{ \frac{\widetilde{\mathbf{S}}_{k}^{(0)}(\boldsymbol{\beta}, u)}{\widetilde{\mathbf{S}}_{k}^{(0)}(\boldsymbol{\beta}_{0}, u)} \right\} d\overline{N}_{k}(u) \right] + o_{p}(1),$$

where

$$\widetilde{\mathbf{S}}_{k}^{(p)}(\boldsymbol{\beta}_{0},t) = n_{k}^{-1} \sum_{i=1}^{n_{k}} w_{ki}(t) Y_{ki}(t) \mathbf{Z}_{ki}(t)^{\otimes p} e^{\boldsymbol{\beta}_{0}' \mathbf{Z}_{ki}(t)}, \ p = 0, 1, 2.$$

Correspondingly,

$$\widetilde{X}_{k}(\boldsymbol{\beta},t) = \sum_{i=1}^{n_{k}} \int_{0}^{t} (\boldsymbol{\beta} - \boldsymbol{\beta}_{0})' \mathbf{Z}_{ki}(u) dN_{ki}(u) - \int_{0}^{t} \log \left\{ \frac{\widetilde{\mathbf{S}}_{k}^{(0)}(\boldsymbol{\beta},u)}{\widetilde{\mathbf{S}}_{k}^{(0)}(\boldsymbol{\beta}_{0},u)} \right\} d\overline{N}_{k}(u),$$

$$\widetilde{\mathcal{X}}_{k}(\boldsymbol{\beta}) = \mathbf{E} \left\{ \widetilde{X}_{k}(\boldsymbol{\beta}) \right\}, \quad \text{and}$$

$$\widetilde{\mathcal{X}}(\boldsymbol{\beta}) = \lim_{s \to \infty} s^{-1} \sum_{k=1}^{s} \widetilde{\mathcal{X}}_{k}(\boldsymbol{\beta}).$$

Since $w(t)Y(t) \leq I(C \geq t)Y(t)$, $\widetilde{\mathbf{S}}_k^{(0)}(\boldsymbol{\beta},t) \leq S_k^{(0)}(\boldsymbol{\beta},t)$. We can show $\widetilde{X}_k(\boldsymbol{\beta}), k=1,\ldots,s$ are bounded using the boundedness results from appendix A. Therefore, $s^{-1}\sum_{k=1}^s \mathrm{E}\left\{|\widetilde{X}_k(\boldsymbol{\beta})-\widetilde{X}_k(\boldsymbol{\beta})|^2\right\}$ $\leq \max_{k\in\{1,\ldots,s\}} \mathrm{E}\left\{|\widetilde{X}_k(\boldsymbol{\beta})-\widetilde{X}_k(\boldsymbol{\beta})|^2\right\}$ is bounded. Hence, $s^{-2}\sum_{k=1}^s \mathrm{E}\left\{|\widetilde{X}_k(\boldsymbol{\beta})-\widetilde{X}_k(\boldsymbol{\beta})|^2\right\} \to 0$. In addition, condition 3 guarantees the independence of $\widetilde{X}_k(\boldsymbol{\beta})$'s. Therefore, By Kolmogorov Strong Law of Large Numbers, $\widetilde{X}(\boldsymbol{\beta})$ converges to $\widetilde{\mathcal{X}}(\boldsymbol{\beta})$ almost surely, for all $\boldsymbol{\beta} \in \mathcal{B}$, where $\boldsymbol{\mathcal{B}}$ is any compact neighborhood of $\boldsymbol{\beta}_0$ (Sen and Singer, 1993, chap.2).

The uniform convergence is showed next.

$$\frac{\partial^2 \widetilde{X}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}^2} = -s^{-1} \sum_{k=1}^s \left[\sum_{i=1}^{n_k} \int_0^{\tau} \left\{ \mathbf{Z}_{ki}(u) - \widetilde{\mathbf{Z}}_k(\boldsymbol{\beta}, u) \right\}^{\otimes 2} w_{ki}(u) Y_{ki}(u) e^{\boldsymbol{\beta}' \mathbf{Z}_{ki}(u)} \frac{d \overline{N}_k(u)}{\widetilde{\mathbf{S}}_k^{(0)}(\boldsymbol{\beta}, u)} \right], \quad (A.2)$$

where $\widetilde{\mathbf{Z}}_k(\boldsymbol{\beta}_0,t) = \widetilde{\mathbf{S}}_k^{(1)}(\boldsymbol{\beta}_0,t)/\widetilde{\mathbf{S}}_k^{(0)}(\boldsymbol{\beta}_0,t)$. Since $w_{ki}(u)Y_{ki}(u)$, $d\overline{N}_k(u)$ and $\widetilde{\mathbf{S}}_k^{(0)}(\boldsymbol{\beta},u)$ are all nonnegative, (A.2) is negative semidefinite. Thus, $\widetilde{X}(\boldsymbol{\beta})$ is a random concave function.

Now by the boundedness conditions and the independence of range of integral on $\boldsymbol{\beta}$, we can evaluate the first and second derivatives of $\widetilde{\mathcal{X}}(\boldsymbol{\beta})$ by taking partial derivatives inside the integral and expectation. Clearly, the first derivative evaluated at $\boldsymbol{\beta}_0$ is $\frac{\partial \widetilde{\mathcal{X}}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}|_{\boldsymbol{\beta}=\boldsymbol{\beta}_0}=0$, since the expected value of the score function $(\partial/\partial\boldsymbol{\beta})\widetilde{C}(\boldsymbol{\beta},\tau)$ equals to 0 at $\boldsymbol{\beta}=\boldsymbol{\beta}_0$. Furthermore,

$$\frac{\partial^2 \widetilde{\mathcal{X}}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}^2} = -\lim_{s \to \infty} s^{-1} \sum_{k=1}^s \mathbb{E} \left[\sum_{i=1}^{n_k} \int_0^{\tau} \{ \mathbf{Z}_{ki}(u) - \widetilde{\mathbf{Z}}_k(\boldsymbol{\beta}, u) \}^{\otimes 2} w_{ki}(u) Y_{ki}(u) e^{\boldsymbol{\beta}' \mathbf{Z}_{ki}(u)} \frac{d\overline{N}_k(u)}{\widetilde{\mathbf{S}}_k^{(0)}(\boldsymbol{\beta}, u)} \right], \tag{A.3}$$

which equals to $\widetilde{\boldsymbol{I}}$ when evaluated at $\boldsymbol{\beta}_0$. By condition 4, (A.3) is negative definite. Therefore, $\widetilde{\mathcal{X}}(\boldsymbol{\beta})$ is a concave function of $\boldsymbol{\beta}$ with a unique maximum at $\boldsymbol{\beta}_0$. Thus, the maximizer of $\widetilde{X}(\boldsymbol{\beta}):\widehat{\boldsymbol{\beta}}$ converges in probability to the unique maximum of $\widetilde{\mathcal{X}}(\boldsymbol{\beta}):\boldsymbol{\beta}_0$ (Anderson and Gill, 1982, Corollary II.2).

Web Appendix C.2: Asymptotic Normality of $s^{-\frac{1}{2}}U_1(\beta_0,t)$ for Highly Stratified Right Censored Data

Rewrite equation (3): $U_1(\boldsymbol{\beta}_0, t) = \sum_{k=1}^s \sum_{i=1}^{n_k} \int_0^t \left\{ \mathbf{Z}_{ki}(u) - \widehat{\mathbf{Z}}_k(\boldsymbol{\beta}_0, u) \right\} \widehat{w}_{ki}(u) dN_{ki}(\boldsymbol{\beta}_0, u)$

as

$$\boldsymbol{U}_{1}(\boldsymbol{\beta}_{0},t) = \sum_{k=1}^{s} \sum_{i=1}^{n_{k}} \int_{0}^{t} \left\{ \mathbf{Z}_{ki}(u) - \widetilde{\mathbf{Z}}_{k}(\boldsymbol{\beta}_{0},u) \right\} \widehat{w}_{ki}(u) dN_{ki}(\boldsymbol{\beta}_{0},u)$$

$$+ \sum_{k=1}^{s} \sum_{i=1}^{n_{k}} \int_{0}^{t} \left\{ \widetilde{\mathbf{Z}}_{k}(\boldsymbol{\beta}_{0},u) - \widehat{\mathbf{Z}}_{k}(\boldsymbol{\beta}_{0},u) \right\} \widehat{w}_{ki}(u) dN_{ki}(\boldsymbol{\beta}_{0},u),$$
(A.4)

where

$$\widehat{\mathbf{S}}_{k}^{(p)}(\boldsymbol{\beta},t) = n_{k}^{-1} \sum_{i=1}^{n_{k}} \widehat{w}_{ki}(t) Y_{ki}(t) \mathbf{Z}_{ki}(t)^{\otimes p} e^{\boldsymbol{\beta}' \mathbf{Z}_{ki}(t)}, \ p = 0, \dots, 2,$$

$$\widehat{\mathbf{Z}}_{k}(\boldsymbol{\beta},t) = \widehat{\mathbf{S}}_{k}^{(1)}(\boldsymbol{\beta},t) / \widehat{S}_{k}^{(0)}(\boldsymbol{\beta},t),$$

$$\widetilde{\mathbf{S}}_{k}^{(p)}(\boldsymbol{\beta},t) = n_{k}^{-1} \sum_{i=1}^{n_{k}} w_{ki}(t) Y_{ki}(t) \mathbf{Z}_{ki}(t)^{\otimes p} e^{\boldsymbol{\beta}' \mathbf{Z}_{ki}(t)}, \ p = 0, \dots, 2,$$

$$\widetilde{\mathbf{Z}}_{k}(\boldsymbol{\beta},t) = \widetilde{\mathbf{S}}_{k}^{(1)}(\boldsymbol{\beta},t) / \widetilde{S}_{k}^{(0)}(\boldsymbol{\beta},t).$$

Clearly,

first part of
$$(A.4) = \sum_{k=1}^{s} \sum_{i=1}^{n_k} \int_0^t \left\{ \mathbf{Z}_{ki}(u) - \widetilde{\mathbf{Z}}_k(\boldsymbol{\beta}_0, u) \right\} w_{ki}(u) dN_{ki}(\boldsymbol{\beta}_0, u)$$

since $\widehat{w}_{ki}(u)dN_{ki}(\boldsymbol{\beta}_0, u) = w_{ki}(u)dN_{ki}(\boldsymbol{\beta}_0, u)$.

We can now write

$$s^{-1}\boldsymbol{U}_{1}(\boldsymbol{\beta}_{0},t) = s^{-1}\sum_{k=1}^{s} \widetilde{\boldsymbol{U}}_{1k}(\boldsymbol{\beta}_{0},t) + \boldsymbol{H}(\boldsymbol{\beta}_{0},t)$$

where $\widetilde{\boldsymbol{U}}_{1k}(\boldsymbol{\beta}_0,t) = \sum_{i=1}^{n_k} \int_0^t \left\{ \mathbf{Z}_{ki}(u) - \widetilde{\mathbf{Z}}_k(\boldsymbol{\beta}_0,u) \right\} w_{ki}(u) dN_{ki}(\boldsymbol{\beta}_0,u)$, and $\boldsymbol{H}(\boldsymbol{\beta}_0,t)$ is the second part of (A.4).

A first-order Taylor expansion of $\widetilde{\mathbf{Z}}_k(\boldsymbol{\beta}_0, u) - \widehat{\mathbf{Z}}_k(\boldsymbol{\beta}_0, u)$ w.r.t. $\widehat{w}_{ki}(u)$ around $w_{ki}(u), i = 1, \ldots, n_k$ gives:

$$\widehat{\mathbf{Z}}_k(\boldsymbol{\beta}_0, u) - \widetilde{\mathbf{Z}}_k(\boldsymbol{\beta}_0, u) \approx \sum_{j=1}^{n_k} \boldsymbol{A}_j(\boldsymbol{\beta}_0, u) \{\widehat{w}_{kj}(u) - w_{kj}(u)\}$$

where

$$\mathbf{A}_{kj}(\boldsymbol{\beta}_{0}, u) = \frac{Y_{kj}(u)\mathbf{Z}_{kj}(u)e^{\boldsymbol{\beta}_{0}'\mathbf{Z}_{kj}(t)}}{n\widetilde{\mathbf{S}}_{k}^{(0)}(\boldsymbol{\beta}_{0}, u)} - \frac{Y_{kj}(u)e^{\boldsymbol{\beta}_{0}'\mathbf{Z}_{kj}(t)}}{n\widetilde{\mathbf{S}}_{k}^{(0)}(\boldsymbol{\beta}_{0}, u)} \times \frac{\widetilde{\mathbf{S}}_{k}^{(1)}(\boldsymbol{\beta}_{0}, t)}{\widetilde{\mathbf{S}}_{k}^{(0)}(\boldsymbol{\beta}_{0}, u)}$$

$$= \frac{Y_{kj}(u)e^{\boldsymbol{\beta}_{0}'\mathbf{Z}_{kj}(t)}}{n\widetilde{\mathbf{S}}_{k}^{(0)}(\boldsymbol{\beta}_{0}, u)} \times \left\{\mathbf{Z}_{kj}(u) - \widetilde{\mathbf{Z}}_{k}(\boldsymbol{\beta}_{0}, u)\right\}$$

Therefore,

$$\boldsymbol{H}(\boldsymbol{\beta}_0,t) = -s^{-1} \sum_{k=1}^{s} \sum_{i=1}^{n_k} \int_0^t \sum_{i=1}^{n_k} \boldsymbol{A}_{kj}(\boldsymbol{\beta}_0,u) \{ \widehat{w}_{kj}(u) - w_{kj}(u) \} w_{ki}(u) dN_{ki}(u) + O_p(1/s).$$

Now write

$$\widehat{w}_{kj}(u) - w_{kj}(u) = I(C_{kj} \ge T_{kj} \wedge u) \left\{ \frac{\widehat{G}(u)}{\widehat{G}(X_{kj})} - \frac{G(u)}{G(X_{kj})} \right\}$$

$$= -I(X_{xj} < u)w_{kj}(u) \int_{X_{kj}}^{u} \frac{dM_{\bullet}^{c}(y)}{nY^{c}(y)} + o_{p}(1),$$

where
$$Y^c(y) = \frac{1}{n} \sum_{j=1}^n I(X_j \ge y) \longrightarrow \pi(y)$$
 and $M^c(y) = I(X \le y, \Delta = 0) - \int_0^y I(X \ge t) d\Lambda^c(t)$

is the martingale associated with the censoring process. Since we assume no strata effect on the censoring process, a single index can be used, such that $M^c_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}(y) = \sum_{l=1}^n M^c_l(y)$.

This gives

$$\mathbf{H}(\boldsymbol{\beta}_{0},t) = s^{-1} \sum_{k=1}^{s} \sum_{i=1}^{n_{k}} \int_{0}^{t} \sum_{j=1}^{n_{k}} \boldsymbol{A}_{kj}(\boldsymbol{\beta}_{0},u) I(X_{xj} < u) w_{kj}(u) \int_{X_{kj}}^{u} \frac{dM_{\bullet}^{c}(y)}{nY^{c}(y)} w_{ki}(u) dN_{ki}(u) + O_{p}(1/s)$$

$$= s^{-1} \sum_{k=1}^{s} \sum_{i=1}^{n_{k}} \int_{0}^{t} \sum_{j=1}^{n_{k}} \boldsymbol{A}_{kj}(\boldsymbol{\beta}_{0},u) w_{kj}(u) \int_{0}^{\infty} I(X_{kj} < y \le u) \frac{dM_{\bullet}^{c}(y)}{nY^{c}(y)} w_{ki}(u) dN_{ki}(u) + O_{p}(1/s)$$

$$= n^{-1} \int_{0}^{\infty} s^{-1} \sum_{k=1}^{s} \sum_{j=1}^{n_{k}} \sum_{j=1}^{n_{k}} \int_{0}^{t} \boldsymbol{A}_{kj}(\boldsymbol{\beta}_{0},u) I(X_{kj} < y \le u) w_{kj}(u) w_{ki}(u) dN_{ki}(u) \frac{dM_{\bullet}^{c}(y)}{Y^{c}(y)} + O_{p}(1/s).$$

Accordingly, $\boldsymbol{H}(\boldsymbol{\beta}_0, \infty) = n^{-1} \sum_{l=1}^n \int_0^\infty Y^c(y)^{-1} \mathbf{Q}(\boldsymbol{\beta}_0, y) dM_l^c(y) + O_p(1/s)$, where

$$\mathbf{Q}(\boldsymbol{\beta}_0, y) = s^{-1} \sum_{k=1}^{s} \sum_{i=1}^{n_k} \sum_{j=1}^{n_k} \int_0^\infty \mathbf{A}_{kj}(\boldsymbol{\beta}_0, u) I(X_{kj} < y \le u) w_{kj}(u) w_{ki}(u) dN_{ki}(u).$$

Since $\{N_{ki}, Y_{ki}, Z_{ki}, i = 1, \dots, n_k, n_k\}, k = 1, \dots, s$ are i.i.d. for highly stratified data,

$$\mathbf{Q}(\boldsymbol{\beta}_0, y) \longrightarrow \mathbf{q}(y) = \mathbf{E}\left[\sum_{i=1}^{n_k} \sum_{j=1}^{n_k} \int_0^t \boldsymbol{A}_{kj}(\boldsymbol{\beta}_0, u) I(X_{kj} < y \le u) w_{kj}(u) w_{ki}(u) dN_{ki}(u)\right].$$

Let
$$\boldsymbol{\psi}_k = \sum_{i=1}^{n_k} \int_0^\infty \mathbf{q}(y)/\{\overline{m}\pi(y)\}dM_{ki}^c(y), \boldsymbol{H}(\boldsymbol{\beta}_0, \infty) = s^{-1}\sum_{k=1}^s \boldsymbol{\psi}_k + O_p(1/s), \boldsymbol{\eta}_k = \widetilde{\boldsymbol{U}}_{1k}(\boldsymbol{\beta}_0, t).$$

Then,

$$s^{-1}U_1(\boldsymbol{\beta}_0, \tau) = s^{-1} \sum_{k=1}^{s} (\boldsymbol{\eta}_k + \boldsymbol{\psi}_k) + o_p(1),$$

which is approximately a sum of s i.i.d. distributed random variables. By multivariate central limit theorem, $s^{-\frac{1}{2}}\boldsymbol{U}_1(\boldsymbol{\beta}_0,\tau)$ is asymptotically normal with covariance matrix $\boldsymbol{\Sigma}_h = \mathrm{E}\left\{(\boldsymbol{\eta}_k + \boldsymbol{\psi}_k)(\boldsymbol{\eta}_k + \boldsymbol{\psi}_k)^T\right\}$. This can be estimated empirically by

$$\frac{1}{s} \sum_{k=1}^{s} (\widehat{\boldsymbol{\eta}}_k + \widehat{\boldsymbol{\psi}}_k)^{\otimes 2},$$

where $\widehat{\boldsymbol{\psi}}_k = \sum_{l=1}^n I(K_l = k) \int_0^\infty \widehat{\mathbf{Q}}(\widehat{\boldsymbol{\beta}}, y) / \{\overline{m}Y^c(y)\} d\widehat{M}_l^c(y)$. Here $\widehat{M}^c(y)$ is defined analogously to $M^c(y)$ with $\Lambda^c(t)$ replaced by $\widehat{\Lambda}^c(t)$, and $\widehat{\mathbf{Q}}(\widehat{\boldsymbol{\beta}}, y)$ is defined analogously to $\mathbf{Q}(\widehat{\boldsymbol{\beta}}, y)$, with $\widetilde{\mathbf{Z}}$ replaced by $\widehat{\mathbf{Z}}$ and w_{ki} replaced by \widehat{w}_{ki} . Further, $\widehat{\Lambda}_j^c(t) = \int_0^t \{nY^c(u)\}^{-1} \sum_{l=1}^n dI(X_l \leq u, \Delta_l = 0)$ and $\widehat{\boldsymbol{\eta}}_k$ is defined analogously to $\widetilde{\boldsymbol{U}}_{1k}(\widehat{\boldsymbol{\beta}}, \tau)$, with $\widetilde{\mathbf{Z}}$ replaced by $\widehat{\mathbf{Z}}$ and w_{ki} replaced by \widehat{w}_{ki} .