
- 1 - 

 

Supplementary Information: Flexible and tunable silicon photonic 

circuits on plastic substrates 

Yu Chen
1
, Huan Li

1
, and Mo Li

11 

1
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, 

USA 

1. Mechanical tuning of flexible photonic devices 

In the experimental demonstration that the Mach-Zehnder interferometer devices (MZI) 

on the PDMS substrate can be mechanically tuned, it was observed that the interference 

fringes shift toward shorter wavelengths (i.e. blue shift) when the substrate is compressed. 

In the following we describe a theoretical model on the mechanical tunability of flexible 

photonic devices on plastic substrates, based on the experimental results and theories of 

flexible electronics
1-5

. 

a) Buckling of silicon waveguide on a flexible substrate 

Subject to compression beyond the critical value of strain, a composite structure 

consisting of a thin film of stiff material (e.g. silicon) on a substrate of compliant material 

(e.g. PDMS) can form periodic buckling in a sinusoidal wave pattern while the film 

remains bonded to the substrate, as shown in Figure S1. Mechanics models have been 

developed to explain ripples and wrinkles in such a system in the context of flexible and 

stretchable electronic devices. With small displacement approximation, the periodic wave 

out-of-plane displacement w and its amplitude A of buckling when strain a (negative if 
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Figure S1 Periodically buckled film on a compliant substrate when a compressive 

strain is applied. 
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compressive) is applied are given by
3,4
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Here, it is assumed that the structure is relaxed initially (i.e. zero initial strain). is the 

period of the ripple and c is the critical value of strain above which the film buckles. 

They are given by the following equations derived from the elastic plate theory: 
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where h is the thickness of the film, 2

f f f/ (1 )E E   and  2

s s s/ (1 )E E   , fE  and sE , 

f  and s  are the plain-strain modulus, Young’s modulus and Poisson ratio of the film 

and the substrate materials, respectively.  In the Si/PDMS system, using the mechanical 

properties listed in Table 1, the critical strain c is evaluated to be 0.03%. This value is 

significantly smaller than the minimum compressive strain that can be reliably applied in 

our experiment. So the waveguides are always in the buckled mode during the tuning 

experiment. 

Table 1 Mechanical properties of silicon and PDMS 

 Young’s Modulus 

E  

Poisson ratio
  

Plain-strain Modulus 

E  

Si 130 GPa 0.27 140 GPa 

PDMS 1.8 MPa 0.48 2.3 MPa 

 

When the buckling amplitude A is small compared with the wavelength λ and sheer 

stress is neglected, the strain field can be approximated to be uniform in the film with an 

average value given by
3
: 
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In our experiment, the maximal compression that is applied to the MZI device with a 

substrate width of 1cm is 300 μm. Thus the corresponding maximal applied compressive 
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strain is -3%. Using equations (2) and (4), the buckling amplitude A is calculated to be 

2.1 μm, which is much smaller than the ripple wavelength λ of 37.3 μm. Thus the above 

small deflection approximation and the consequent assumption of uniform strain field are 

valid in our situation. Using equations (2), (4) and (5), the uniform normal strain in the 

film can be expressed in term of the applied strain as: 
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b) Photo-elastic effect in strained silicon waveguide 

We next considered the photo-elastic effect in a silicon waveguide that is buckled when a 

uniaxial strain is applied to the compliant substrate. Ignoring in-plane shear stress, the 

strain tensor in this buckled silicon waveguide could be written as: 
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 (7)              

The strain field induces photo-elastic effect and changes in the refractive index matrix in 

silicon as described by
6
: 
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where ijp are the elements of the elasto-optic coefficient matrix. Silicon has a cubic 

crystal structure so its elasto-optic coefficient matrix reduces to:  
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with 11 0.101p   , 12 0.0094p  . From equations (7), (8), and (9), the refractive index 

change in x and y directions in a cubic crystal structure can be expressed as: 
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In our system, the silicon waveguides are designed to support only the fundamental TE 

mode which has electric field component transverse to the waveguide direction and in the 

plane of the film. So the induced photo-elastic effect depends on the orientation of the 

waveguide with respect to the direction of applied strain as depicted in Figure S2. If the 

waveguide is along the direction of applied strain, i.e. the x-axis in Figure S2, then the 

non-zero electric field component of the TE mode is along the y-axis and only yn as 

given by equation (13) needs to be considered in the analysis and leads to a proportional 

change in the waveguide mode index 

 
y

eff yn n    (14) 

The coefficient   in our waveguide design (500 nm wide, 220 nm thick) is numerically 

evaluated to be 1.15 for the fundamental TE mode with mode index of eff 2.3n  . 

  When the waveguide is normal to the direction of applied compression, because 

the width of the waveguide (0.5 µm) is much smaller than the presumed buckling period 

 

Figure S2 Single-mode waveguide under uniaxial applied strain. 
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λ (37.3 µm when -3% strain is applied), the waveguide will not buckle in its transverse 

direction with the substrate. Thus, the induced strain and its photo-elastic effect are 

negligible. However, to fully understand the photo-elastic effect in a curved waveguide 

on a compressed substrate, more complicated modeling of the buckling effect and the 

resultant strain field distribution in the waveguide is needed which will be developed but 

is beyond the scope of the current paper. 

c) Mach-Zehnder interferometer under uniaxial strain  

The design of the MZI is illustrated in Figure S3. The two arms are largely symmetric 

except for two straight waveguide sections of length L/2 along the x-axis. So the 

geometric length difference is 60 mL L    . When the substrate is compressed along 

the x-axis, we only need to consider the photo-elastic effect in these two sections of 

waveguide. The phase changes in other parts (the bends and the horizontal sections) of 

the interferometer are balanced in the two arms. Thus, the total phase difference between 

the two arms when a compressive strain is applied along the x-axis can be written as
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The part of mechanically induced phase shift in (15) is: 
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and the dependence of yn on applied strain is given by equation (6) and (13). 

 The power transmission of the MZI can be written as: 

 

Figure S3 Geometry of Mach-Zehnder interferometer device used in the experiment. 
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and the wavelength of the fringe peak of order N is: 
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The experimental results in Figure S3 of the main text can be fitted with the above 

theoretical model. The fitting uses only one free parameter, which is a proportional 

coefficient between the nominal strain n  read from the mechanical stage’s micrometer 

and the actual applied strain a  on the device as: a nk  . The result gives a value of 0.7 

for the parameter k, which can be considered reasonable, given the non-ideal contact and 

friction between the stage and the sample. Thus the observed mechanical tuning of MZI 

device can be convincingly explained by photo-elastic effect induced by mechanical 

compression. 

d) Micro-ring resonator under applied strain 

The micro-ring resonator shows very different behavior from the MZI when it is tuned. 

When the substrate is compressed, the resonance wavelengths only shift slightly but the 

measured quality factor Q and the extinction ratio (ER) changes rapidly with the applied 

strain. These suggest that the photo-elastic effect in the micro-ring is weak due to relaxed 

strain in the structure of a closed loop or averaged out due to the symmetry of a closed 

 

Figure S4 Geometry of the ring resonator device under mechanical tuning. 
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ring, whereas the coupling efficiency between the bus waveguide and the micro-ring can 

be changed mechanically. To fully understand the photo-elastic effect in a ring, detailed 

mechanics modeling of the buckling effect and the resultant strain field distribution in the 

waveguide is needed. Nevertheless, the latter effect can be modeled using the standard 

theory of waveguide coupled optical resonators
7
. As shown in Figure S4, t and i denote 

the field transmission and coupling coefficients in the waveguide and the micro-ring 

coupled region (region inside the dashed box). Both t and κ are purely real and related to 

each other by 

 
2 2 1t    (19) 

 and  are the round trip field transmission and loss coefficients in the ring and thus 

they are related by  

 
2 2 1    (20) 

from energy conservation. With these parameters, the waveguide loaded Q factor and on 

resonance intensity transmission can be expressed as 
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At the critical coupling condition of t  , 0 0T  and c i / 2Q Q  for large Q, where iQ is 

the intrinsic Q value which can be expressed by letting t=1 in equation (21). From our 

measurement results in Fig. 4c of the main text, the critically coupled cQ  is ~15,000 so 

the intrinsic iQ is ~30,000. From the above relations we can solve for the value of the 

coupling coefficient κ to be ~0.5 in this device before it is compressed. Approximately, κ 

is exponentially dependent on the coupling gap g, as can be understood from the coupled 

mode theory and confirmed by numerical simulation. It thus can be expressed as: 

 0( )/

0( ) ( )
g g d

g g e   
  (23) 

where d is the decay length and evaluated by numerical simulation to be 44 nm in our 

system. Combining equations (19)-(23), the Q factor and the extinction ratio

10 010log ( )ER T can be expressed in closed forms. With small displacement 
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approximation, the actually change of the coupling gap 0g g g   is assumed to be 

proportional to the applied strain a with a coefficient b as 

 ag b   (24) 

The above model was used to fit the experimental results in Fig. 4c and d of the main text 

with parameter b being the only free parameter. From the fitting result, it was determined 

that the coupling gap is increased to 112 nm from the initial size of 80 nm to reach the 

critical coupling condition when 3.7% strain is applied to the sample. 

2. Repeatability test of the flexible devices 

To test the repeatability and reversibility of mechanical tuning of the flexible devices, we 

have repeated the tuning process for more than fifty cycles of compressing and releasing. 

Figure S5 shows the results from a Mach-Zehnder interferometer (a) and a micro-ring 

resonator (b). For the MZI device, the output interference fringes shift when the sample is 

compressed. Figure S5a shows the transmission measured at 1570 nm and spectral shift 

of the fringes of a MZI device when the sample is repeatedly compressed and released in 

steps of 50 µm for ten times. After each cycle, the transmission recovers to within 1.8% 

(standard deviation, the same below) of the original value and the fringe peak 

wavelengths return to the original value within 0.4% of the free-spectral range (FSR). In 

the intermediate tuning step, the variations of transmission and fringe peak wavelengths 

are within 9.6% and 1.1% FSR, respectively. This large variation of measured 

transmission is due to the misalignment between the input/output tapered fibers and the 

sample when it is deformed. This issue of misalignment can be alleviated if the fibers are 

permanently attached to the sample, using optical epoxy for example.  
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For the micro-ring resonator, mechanically tuning changes its extinction ratio and 

quality factor dramatically but only slightly affect the resonance wavelengths. Figure S5b 

shows the result of repeatability test in which the extinction ratio and the shift of 

resonance wavelengths are measured in repeated tuning cycles of compression and 

releasing in steps of 400 µm. Like the MZI, after every cycle, the device optical 

properties recover to the original value within 5% for extinction ratio and 0.2% of FSR 

for resonance wavelengths, indicating excellent reversibility of the device. However, in 

the intermediate steps of tuning, large variations of ER and resonance wavelengths were 

observed along with a hysteretic effect between compressing and releasing. It suggests 

that the friction between the sample and the mechanical stage is high and the manual 

control of the stage displacement is imprecise. These can be solved by using an integrated 

actuator for mechanical tuning or a more properly designed mechanical system to avoid 

the friction induced hysteresis. Nevertheless, the demonstrations above show that the 

flexible photonic devices have very good repeatability and reversibility properties. They 

thus are promising to be applied in reconfigurable and adaptive optical systems.  

3. Yield of the transfer process 

By carefully controlling the conditions of critical processes in the transfer procedure, we 

can routinely achieve a device yield above 90%. For example, to ensure a calibrated and 

consistent etch rate in the BOX undercut etching step, temperature of the buffered oxide 

 

Figure S5 Geometry of Mach-Zehnder interferometer device used in the experiment. 
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etchant (BOE) solution was maintained at zero degree Celsius by immersing the 

container in an ice-water bath. During the bonding step, the devices were placed in a 

heated vacuum desiccator for an hour to remove water moisture at the bonding interface. 

Figure S6 shows images of a large array of silicon waveguides after being transferred on 

to a PDMS substrate with a very high yield and negligible displacement of the waveguide 

from their positions on the original substrate. 
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Figure S6 Images of a dense array of waveguides transferred on to a PDMS substrate, 

showing a high yield of the transfer process. 


