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S1 Device characterization

In Fig. S1, we present electrical measurements characterizing the transport properties of the device, in

which the Coulomb blockade and Fabry-Perot transport regimes for different gate votlages can be seen,

and from which the bandgap is estimated.

S2 Discriminating gate-induced flux from time-dependent flux

creep

In this section, we present measurements which discriminate between time dependent magnetic flux creep

(Fig. 2c in the main text) and gate-induced flux (Fig. 3b of the main text). This is done by plotting the

time-dependent oscillations of IC at different gate voltages. If the gate is inducing no flux in the SQUID,

the oscillations at different gate voltages should all be in phase. If the gate is inducing a flux in the

SQUID, there will be a phase shift between the oscillations at different gate voltages.

In Fig. S2, we demonstrate that at B = 0, the oscillations in time at different gate voltages are in

phase, while B = 250 mT, they are shifted by the gate-induced flux. The data in Fig. S2 are extracted

from a 3-D (x, y, z) = (IB, VG, t) dataset (one at B = 0 and one at B = 250 mT). The measurements

are performed by sweeping the bias current, stepping the gate voltage quickly, and then repeating this in

time. The gate sweep is performed quickly enough such that the measurement time for a full gate sweep

measurement, as shown in Fig. S2a, is fast compared to the external flux drift: the measurement time

for such a gate sweep is tmeas = 7 min, while the external flux creep rate during these measurements is

about 1 Φ0 in two hours. Each gate sweep can therefore be considered to be taken at a fixed external flux.

Note that in addition to the slow flux creep, we also sometimes observe sudden jumps in the external
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flux, such as can be seen at t = 4.2 hours in Fig. S2d. This results in a sudden jump in the phase of

the oscillations. The gate induced phase shift, however, can still be tracked both immediately before and

after the jump. The gate traces in Fig. S2 and Fig. 3 of the main text are extracted at timesteps where

these flux jumps are not present.

Figure S2b shows IC vs. time for three different gate voltages at B = 0. At zero external field, the

oscillations of IC measured at different gate voltages are all in phase, indicating no gate-induced flux. In

Fig. S2d, we show IC oscillations in time at B =250 mT. The d.c. gate voltage now shifts the phase of

the oscillations, as can be seen clearly in Fig. S2d. This gate-dependent phase shift demonstrates that

the gate-induced sinusoidal modulation of IC shown in Fig. S2c, and Fig. 3c of the main text, are indeed

caused by a gate-voltage induced magnetic flux.

S3 Expected static displacement of the nanotube with gate volt-

age

When a constant voltage VG is applied to the gate, the suspended nanotube segments are attracted

to the gate by a Coulomb force, FC ∝ V 2
G. The equilibrium position of the nanotube corresponds to

the position where this Coulomb force is balanced by the mechanical restoring force [1]. At small gate

voltages, the bending rigidity of the nanotube dominates the mechanical restoring force, giving a static

displacement u ∝ V 2
G (the weak bending regime). Beyond a certain gate voltage, induced tension in the

nanotube becomes important in determining the mechanical restoring force, and there is a transition to

a strong bending regime in which u ∝ V
2/3
G . The transition between these two regimes depends on the

dimensions of the nanotube, and can also be influenced by additional tension introduced, for example, by

the fabrication process. In any case, the net result is that the displacement of the nanotube as a function

of gate voltage is, to a good approximation, linear over a relatively wide regime of voltages, as can be

seen in Fig. 2 of Sapmaz et al. [1].

If the nanotube displacement was not linear in gate voltage, the periodicity of the IC oscillations in

gate voltage, ∆V −1
G , would change slowly as a function of gate voltage. The relatively constant ∆V −1

G

we observe in Fig. 4a of the main text indicates that the nanotube displacement in our device is indeed

approximately linear in the range of gate voltages we study.
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Critical current oscillations in gate voltage were fitted to a cosine function:

f(x) =
a + b

2
+

a− b

2
cos

[
(x− x0)

2π

L

]
(1)

where a and b are the maximum and minimum of the modulation respectively, and where x0 is the

position at the maximum and L the periodicity.

S4 Definition of the nanotube displacement and estimation of the

flux responsivity

In this section, we give a rigorous definition of the nanotube displacement, and use this definition to

calculate the flux responsivity of the device. In particular, following Poot et al. [2] , we define the

displacement of a mode of the nanotube in such a way that we require only one effective mass for all

modes, avoiding the complication of having different effective masses for different modes.

The zero-frequency, or dc, flexural displacement zdc(x, y) of the carbon nanotubes towards the back

gate (the x− y plane), can be described by a single coordinate udc. The displacement per unit force and

the change of area ∆A per unit displacement both depend on the chosen definition of udc. This is also

true for the mechanical resonance modes of the nanotube, which form an eigenbasis for the nanotube

displacement. Any periodic displacement of the nanotube with frequency f can be decomposed into a

superposition of the eigenmodes:

z(x, y, t) =
∞∑
0

unξn(x, y) cos (2πft + ϕn), (2)

where un is the displacement coordinate, ξn(x, y) is the normalized mode shape, fn is the eigenfrequency

and ϕn is the phase offset of mode n. For a nanotube with length ` much larger than its cross-sectional

diameter, ξn(x, y) is usually integrated in the radial direction, such that the mode shape can be described

as a function of only the distance along its length direction, x, i.e. ξn(x, y)→ ξn(x). The dc displacement

(f = 0) is related to the eigenmodes by:

zdc(x) =
∞∑
0

unξn(x). (3)

In general, the displacement, modeshapes and eigenfrequencies of the nanotube must be solved from

its elastodynamic differential equations and depend on the nanotube geometry, its rigidity, any built-

in tension, and the amount and distribution of applied forces. Once this is done, the definition of
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displacement depends on the choice of normalization for ξn(x). A convenient normalization for ξn(x) is:

1
`

∫ `

0

ξn(x)2dx = 1. (4)

With this normalization, the displacement coordinate un is (spatial) root-mean-square displacement of

mode n. The dynamical spring constant of each eigenmode now equals kn = mR(2πfn)2, where mR is

the nanotube mass. The change in area due to a d.c. nanotube displacement becomes:

∆A =
∫ `

0

zdc(x)dx =
∞∑
0

an`un, (5)

an ≡
1
`

∫ `

0

ξn(x)dx. (6)

To estimate the numerical coefficients an, we assume sinusoidal eigenmode shapes for the nanotubes:

ξn(x) =
√

2 sin (πnx/`) (based on [2]). The numerical coefficients then become an = 0.9/n for odd n and

an = 0 for even n (no net area change). For a displacement due to a uniformly distributed dc force, the

amplitude of each eigenmode is proportional to (an/fn)2, which means that the shape of the dc deflection

is almost entirely determined by the fundamental eigenmode (fn is roughly proportional to n). The dc

spring constant is then equal to k1 and the area change for both udc and u1 is characterized by the same

coefficient, a1 = 0.9.

Having defined the displacement, we are now in a position to calculate the responsitivity of the

device. The flux responsivity Φu which we give in the main text is calculated by multiplying ∆A with

the applied magnetic field B and dividing out the displacement udc:

Φu ≡
dΦ

dudc
≈ dΦ

du1
= a1B`. (7)

At a field of 1 T and a suspended nanotube length of 800 nm, we get a responsivity Φu = 0.35 Φ0/nm per

suspended nanotube segment. The dc displacement of the nanotube due to the applied gate voltage can

now be calculated based on Fig. 4a of the main text: At 1 T, we observe five oscillations of the SQUID

critical current, i.e. ∆Φ = 5Φ0. With the calculated responsivity, the displacement of each nanotube

segment over the full gate voltage range is ∆Φ/Φu = 7 nm.

S4 Estimation of the zero point motion

Quantum mechanical displacement fluctuations are dominant when a mechanical resonator with resonance

frequency fR is cooled to a temperature T such that its thermal energy is far less than the energy of a
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single phonon, i.e. kBT � hfR. Here, kB is the Boltzmann constant and h is the Planck constant. In

this regime, the resonator has an average phonon occupation which approaches zero, and displacement

fluctuations are due to the quantum mechanical ground state energy of the resonator, which equals that

of half a phonon. The root-mean-square value of the ground state displacement fluctuations is called the

zero-point motion and is given by [2]:

uzpf =

√
hfR

2mR(2πfR)2
(8)

The maximum power spectral density Suu(f) due to the zero-point motion occurs at the resonance

frequency and is related to uzpf according to [2]:

Szpf
uu (fR) = u2

zpf

(
πfR

2Q

)−1

=
hQ

πmR(2πfR)2
(9)

where Q is the quality factor of the resonator. In order to measure the zero-point fluctuations, the

measurement sensitivity of the detector should be better (lower) than Szpf
uu (fR). The suspended carbon

nanotubes in this paper each have a fundamental eigenmode with displacement in the direction of the

back gate. Figure S3 shows a measurement of the mechanical response of the fundamental mode of one

of the nanotubes to an applied driving force. From the response curve, we find a resonance frequency of

126 MHz and a quality factor Q = 3× 104. The mass of an 800 nm long single-walled carbon nanotube

is approximately mR = 5 × 10−21 kg (and the corresponding spring constant is thus k = 3 × 10−3

N/m). Using this lower bound for Q gives uzpf = 3.6 pm and
√

Szpf
uu (fR) = 45 fm/

√
Hz. With the above

responsivity, the zero-point fluctuations of a single suspended nanotube segment result in a flux noise in

the SQUID of 16 µΦ0/
√

Hz.

S5 Estimates of coupling for a nanotube transmon qubit

The zero-phonon coupling rate g is given by the shift in the energy levels of the qubit in response to

the zero-point fluctuations of the nanotube position [3, 4]. The zero point fluctuations of uzpf = 3.6 pm

together with the responsivity of 0.35 mΦ0/pm gives a correponding flux shift of ΦZPF = 1.3 mΦ0. In

the transmon limit, where the charging energy is much smaller than the Josephson energy (EC � EJ),

the energy splitting of the qubit is given by [5]:

E01 ≈
√

8EJEC (10)
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A small change in the qubit energy due to a change in the Josephson energy is then given by:

δE01 =
E01

2
δEJ

EJ
(11)

We now need to estimage δEJ in response to the ΦZPF above. Our SQUID shows a near complete

suppression of the critical current as a function of flux, allowing us to estimate the change in EJ on the

slope of the flux oscillation as

dEJ

dΦ
≈ Emax

J

0.5Φ0
(12)

The coupling rate g, given by the shift of the qubit energy in response to the zero point fluctuations of

the nanotube position, can then be estimated as:

g = δEZPF
01 ≈ E01

2
ΦZPF

0.5Φ0
(13)

Assuming E01 is designed to be 6 GHz, and using ΦZPF = 1.3 mΦ0, we estimate the coupling to be g = 7

MHz.
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Figure S1: Two-terminal differential conductance a, as a function of the source-drain bias voltage

VB and gate voltage VG, taken at 1.2 K (series resistance from wiring and filters has not been subtracted).

This dataset was taken during an earlier cooldown of the device in a different cryogenic insert. As a

result, there is a slight shift of the threshold gate voltage for hole conductance compared to Fig. 1c of

the main text. We determine the bandgap of the device from the size of the empty Coulomb diamond

by subtracting the average of the 1e/1h addition energies from the empty-dot addition energy. b, Zoom

of the dataset showing the high-conductance Fabry-Perot regime when doping the device with holes. c,

Zoom of dataset showing Coulomb blockade when the device is doped with electrons. When doping the

device with electrons, tunnel barriers naturally form from p-n junctions near the edge of the trench. The

p-n junctions arise from a gate-independent p-type doping of the nanotube near the trench edge due to

the work function difference between the nanotube and the metal contacts.
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Figure S2: Gate-voltage induced flux observed by a gate-dependent shift of the phase of the

time-dependent oscillations of IC a, Voltage VM as a function of applied bias current IB and gate

voltage VG at B = 0. b, VM as a function of IB and of time for three different gate voltages indicated

by the dashed in a. c,d Same measurement as in a,b, but now taken in the presence of a parallel

magnetic field of 250 mT. d, A gate dependent phase shift ΦGate of the oscillations of IC is now observed,

demonstrating that the gate voltage is inducing a magnetic flux in the SQUID.
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Figure S3: Driven mechanical resonance of the nanotube measured by applying a bias current

above the critical current and using rectification readout technique introduced in [6]. We estimate the

quality factor of the resonance from the full width at half maximum, ∆f , of the measured curve. With

fR = 126 MHz and ∆f = 4 kHz, we get Q = fR/∆f = 3× 104.
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