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Supplementary Figure S1: Low-temperature specific heat versus temperature for three
single crystals of Yb2Ti2O7. Sample A was used for the polarized neutron-scattering experi-
ments reported in the main text. The heat capacity measurements were carried out in a Quantum
Design Physical Property Measurement System (PPMS) using a pulse-relaxation calorimetry
technique.
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Supplementary Figure S2: EXAFS radial distribution functions at the Yb L3-edge. The
curves were obtained from the Fourier transform of raw spectra in the upper inset. The near
edge x-ray absorption spectra (XAS), shown in the middle inset, reveal only the Yb3+ peak at
8947 eV. The data are presented for crystals A (black), B (red) and C (green).
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Supplementary Figure S3: Raw polarized neutron-scattering cross-sections. The data
were taken in the energy-integrated diffraction mode at DNS. (a,b,c) The SF, NSF, and total
cross-sections, respectively, in the Z-direction polarized neutron-scattering measurements at
T = 0.3 K. (d) The total cross-section in the Z-direction polarized neutron-scattering measure-
ments at T0 = 0.04 K. (e,f) The SF and NSF cross-sections, respectively, in the X-direction
polarized neutron-scattering measurements at TX = 0.7 K. Sharp peaks at reciprocal lattice
vectors (111), (002), (220) and so on are dominated by the nuclear contributions. The weak
peaks at (1.5, 1.5, 0.5) and (112) are attributed to contamination from higher order scattering
and are not intrinsic.
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Supplementary Figure S4: Temperature dependence of the theoretically calculated Z-
polarized neutron-scattering cross-section in the SF channel. (a) The intensity along the
[11 − 1] cut through the (111) point. (b) The intensity along the [111] cut through the (111)
point.
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Supplementary Methods

Background subtraction
Here, we explain how we derive the Z-direction polarized diffuse magnetic scattering profiles
at 0.3 K shown in Fig. 2a of the main text from the raw data shown in Supplementary Fig. S3.
We estimate and subtract the background levels for the SF and NSF channels as follows.

Because of the formation of a long-range ferromagnetic order and the loss of the [111]-rod
diffuse scattering intensity well below TC K, the sum of the SF and NSF channels at T0 = 0.04 K
can be roughly regarded as a temperature-independent background due to the nuclear coherent
and incoherent scattering cross-sections;

(
dσ

dΩ

)Total bg

= N∗N + ISI ≈
(

dσ

dΩ

)Total

T0

, (S1)

except around the Bragg peak positions where we suffer from a slight overestimate due to the
magnetic Bragg-peak intensities. On the other hand, the SF and NSF cross-section profiles
obtained at 0.04 K cannot be used as background levels, because the incident neutron spins are
fully depolarized at 0.04 K, while they are only partially depolarized at 0.3 K, as is clear from
Fig. 3e of the main text.

Note that the spin flipping ratio is defined as the ratio of the NSF to SF scattering intensity
at a Bragg-peak position (111), where nuclear coherent scattering cross-section N∗N , which
appears only in the NSF channel according to Eqs. (5) and (6) as well as Eqs. (3) and (4),
dominates over the other contributions. Then, it is reasonable to assume that the SF and NSF
cross-sections observed at a temperature T with the Z- and X-direction polarized neutron-
scattering measurements take the forms

(
dσ

dΩ

)Z−SF

T

≈
(M∗

⊥Y M⊥Y )T + 2
3
ISI + r−1

T

[
(M∗

⊥ZM⊥Z)T + N∗N + 1
3
ISI

]

1 + r−1
T

, (S2)

(
dσ

dΩ

)Z−NSF

T

≈
r−1
T

[
(M∗

⊥Y M⊥Y )T + 2
3
ISI

]
+ (M∗

⊥ZM⊥Z)T + N∗N + 1
3
ISI

1 + r−1
T

, (S3)

(
dσ

dΩ

)X−SF

T

≈
(M∗

⊥Y M⊥Y + M∗
⊥ZM⊥Z)T + 2

3
ISI + r−1

T

[
N∗N + 1

3
ISI

]

1 + r−1
T

, (S4)

(
dσ

dΩ

)X−NSF

T

≈
r−1
T

[
(M∗

⊥Y M⊥Y + M∗
⊥ZM⊥Z)T + 2

3
ISI

]
+ N∗N + 1

3
ISI

1 + r−1
T

. (S5)

Using Eqs. (S4) and (S5), the magnetic cross-section can be eliminated and the temperature-
independent purely X-NSF background cross-section is given by

N∗N +
1

3
ISI =

(
dσ
dΩ

)X−NSF

TX

− r−1
TX

(
dσ
dΩ

)X−SF

TX

1− r−1
TX

, (S6)
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at a temperature TX . For a higher accuracy, it is better to take the data with a larger spin
flipping ratio rTX

, and thus we take TX = 0.7 K where rTX
∼ 14.97 (Fig. 3e of the main

text). The raw data for the X-direction polarized elastic diffuse neutron-scattering experiments
are shown in Supplementary Figs. S3 e,f. In fact, the Q-space region where the X-direction
polarized experiments have been performed does not cover all the reciprocal space required for
this analysis. Nevertheless, the profile for Eq. (S6) obtained from Supplementary Figs. S3 e,f
at TX = 0.7 K is reproduced to an accuracy of 10%, except at the Bragg-peak positions, by
multiplying the profile for

(
dσ
dΩ

)total

T0

at T0 = 0.04 K shown in Supplementary Fig. S3d by an
overall scale factor 0.6. This allows us to simulate the NSF background profile for Eq. (S6) in
the whole required area of the (hhl) plane.

Now, we can express the background cross-sections for the SF and NSF channels in the
Z-direction polarized neutron-scattering experiments as

(
dσ

dΩ

)Z−SF bg

T

=
[N∗N + ISI ]− (1− r−1

T )
[
N∗N + 1

3
ISI

]

1 + r−1
T

, (S7)

(
dσ

dΩ

)Z−NSF bg

T

=
r−1
T [N∗N + ISI ] + (1− r−1

T )
[
N∗N + 1

3
ISI

]

1 + r−1
T

, (S8)

where [N∗N + ISI ] and
[
N∗N + 1

3
ISI

]
are given by Eqs. (S1) and (S6), respectively. The spin

flipping ratio at T = 0.3 K is given by rT = 8.7 (Fig. 3e of the main text).
In principle, we should also be able to eliminate a small (11.5%) mixing of M∗

⊥ZM⊥Z in the
SF channel and of M∗

⊥Y M⊥Y in the NSF channel at 0.3 K. However, this effect is found to be
small compared with the accuracy of the background subtraction.

Mean-field theory and random phase approximations
The classical mean-field (MF) Hamiltonian is given by

HMF =
1

2

∑

Q

∑
µ,ν=x,y,z

3∑

i,j=0

〈2Sµ
−Q,i〉hµν

Q,i,j〈2Sµ
Q,j〉 (S9)

where hµν
Q,i,j is obtained from the Fourier transform of the full Hamiltonian (HD + Hse) given

in the main text16,19, and i and j denote indices for the Yb sites at R + ai (i = 0, · · · , 3) with
fcc lattice vectors R and a0 = (0, 0, 0), a1 = a(0, 1

4
, 1

4
), a2 = a(1

4
, 0, 1

4
), and a3 = a(1

4
, 1

4
, 0),

and the cubic lattice constant a. The local coordinate frames are taken as

ex
0 = − 1√

6
(1, 1,−2) , ey

0 = − 1√
2

(−1, 1, 0) , ez
0 =

1√
3
(1, 1, 1), (S10)

ex
1 = − 1√

6
(1,−1, 2) , ey

1 = − 1√
2

(−1,−1, 0) , ez
1 =

1√
3
(1,−1,−1), (S11)
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ex
2 = − 1√

6
(−1, 1, 2) , ey

2 = − 1√
2

(1, 1, 0) , ez
2 =

1√
3
(−1, 1,−1), (S12)

ex
3 = − 1√

6
(−1,−1,−2) , ey

3 = − 1√
2

(1,−1, 0) , ez
3 =

1√
3
(−1,−1, 1), (S13)

to maximally exploit the symmetry of the system. In particular, the z axis points to the 〈111〉
direction of the Ising magnetic moment. This in turn introduces the following simple bond-
dependent phases φr,r′ = φij = φji in the two superexchange terms proportional to q and K
which break the planar U(1) pseudospin symmetry;

φ01 = φ23 = −2π

3
, φ02 = φ31 =

2π

3
, φ03 = φ12 = 0, (S14)

where (i, j) is a pair of sublattice indices for r and r′.
The Ewald summation technique was employed to calculate the long-range magnetic dipolar

interaction. Then, the eigenvalue problem is solved for each Q as
∑
ν

hµν
Q,i,jφ

ν
Q,n,j = εQ,nφµ

Q,n,i, (S15)

where n labels the twelve eigenvalues/eigenstates. The magnetic neutron-scattering cross-
sections at a temperature T are then calculated with the random phase approximation (RPA)34,44

as

I(Q) =
∑
n

4∑

i,j=1

fµν
Q,i,j

φµ
−Q,n,iφ

ν
Q,n,j

3 + εQ,n/T
. (S16)

where
fµν

Q,i,j =
1

4|Q|4 [Z · (Q× (gµe
µ
i ×Q))]

[
Z · (Q× (gνe

ν
j ×Q))

]
, (S17)

with Z = (1,−1, 0)/
√

2 for the NSF channel and

fµν
Q,i,j =

1

4|Q|4 [Q× (gµe
µ
i ×Q)] ·

[
Q× (gνe

ν
j ×Q)

]
(S18)

for the total. The SF channel is obtained as the difference between the above two.
In our case of J > 0, while δ > 0 leads to profiles analogous to the nearest-neighbour

Ising exchange or dipolar spin ice10, a choice of δ < 0 produces various profiles depending on
the other relative coupling constants q and K. The best fit to our experimentally obtained and
analysed magnetic scattering profiles at 0.3 K, shown in Fig. 2a of the main text, was obtained
with (J, δ, q,K) = (0.68 K,−0.8, 0.2,−1.0), as shown in Fig. 2b of the main text. This set of
parameter values is compared to the result from the spin-wave fitting20, which is translated into
J = 2.0± 0.5 K, δ = −0.6± 0.3, q = 0.6± 0.3 and K = −1.6± ∼ 0.4 in the present notation.
Our exchange energy scale is smaller by a factor of 2-3. The discrepancy in J may be partly
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attributed to an overestimate of the temperature at which an RPA instability occurs, ∼ 0.29 K.
This gives θCW ∼ 0.29 K. Scaling the energy scale by a factor of 2 reproduces the experimental
observation θCW ∼ 0.53 K (ref. 24). δ and q are nearly within error bars of the analysis given
in ref. 20. However, we note that if we take |δ| to be comparable to q and/or take a much larger
value of |K|, e.g., K = −1.2, following ref. 20, the intensity at the scattering branch from (111)
to (220) in the SF channel is significantly suppressed, in disagreement with our experiments.
The nearest-neighbour coupling constants from HD are of the order of 0.01 K, namely, one or
two orders of magnitude smaller than the superexchange couplings of our choice, though they
give rise to∼ −0.2 K in the energy eigenvalue of the mean-field Hamiltonian. This might cause
other minor differences. As also noted in ref. 20, the parameters δ, q, and K we have obtained
are quite different from the estimates by Thompson et al.44 who analysed the Hamiltonian
including all the crystal field states but only the same number of coupling constants without any
multipolar interactions.

In Supplementary Figs. S4 a and b, we show the temperature dependence of the calculated
neutron-scattering intensity in the SF channel (without taking account of the form factor) along
the [11 − 1] and [111] cuts through the (111) point, respectively. It is clear that the intensity
along the [11 − 1] cut is not only enhanced but also sharpened with decreasing temperature
down to 0.3 K, while that along the [111] cut remains almost featureless even at 0.3 K. This
is consistent with the picture that the high-temperature phase of this model is described as a
Coulomb phase characterized by a remnant of a pinch-point singularity.

The mean-field ground state was obtained from the same scheme as employed above. We
searched for the lowest-energy states among the classical energies per site,

Ecl,Q,n =
εQ,n

Maxi
∑

µ |φµ
Q,n,i|2

. (S19)

Then, the MF ground state is found by approaching the (000) point from the [100] direction,
resulting in the noncoplanar pseudospin structure and the nearly collinear ferromagnetic struc-
tures shown in Figs. 1b and 1c of the main text, respectively.

Note that the possibility of an ordered spin-ice state10,45,46 is ruled out, since it should create
magnetic Bragg peaks at (100), in contradiction to our findings and cannot explain the neutron
depolarisation due to the macroscopic magnetic moment.
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