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1 Notation and Regularity Conditions

We begin by listing notation used in the proofs, much of which has already been introduced

in the main manuscript and is repeated here for continuity. For : =1,...,n and j = 0,1 we
define

pij(0) = expit{(—1)"*'67 X}
V(0) = E[X®2pi1(0)pi0<9)]

RV(5:8) = n ! L, V() 27 exp(87 Z0), (1 8) = B{Yy ()27 exp(8" Z)}
(1) : : .
Z,(:8) = Rﬂm(;g)’ =

dA; (1) = E{dNu( )*}
! TJO)(t§ ,8])

dAG(t) = exp(ﬁ;TZi)dAgj (t)

AM(t) = ANy (1) — Yy (1A (1),
In addition, parallel to the notation defined above, we define a set of notation, with either
superscript or subscript C', that will be used in proofs related to censoring C. Specifically,
RU(t ), r(t ), Z; (1 @), 20 (5 @), Qoj(@), AGH(t), AS*(¢), and dMS*(t) are defined
as above, except that Z;, 3, \i;(t), Nij(t), Ag; are replaced by Z¢ a,)\g( ),Ng(t),Agj re-

spectively. For example,
RY) (o) =n ' Y0 V() Z8% exp(al Z€), (o) = E{Y;;(1) 2% exp(a” ZC)}.
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We assume the following regularity conditions for i =1,... n, and 5 =0, 1:
(a) P(U; > 1) >0.
(b) Z; is bounded almost surely.
(c) Agj(T) < 0.
(d) B} is the unique solution to
| B0z 03~ [z 8PN =0,
and £2;(3;) is positive definite.
(e) @* is the unique maximizer to E{A87 X — log(1 + egTX)} and V(0") is positive
definite.
(f) Af;(1) < 0.
(2) a;j is the unique solution to
| B0z @ - [ =By, o -0,
0 0
and Q¢;(aj) is positive definite.
(h) P(A; = j|Z;) is bounded away from 0.

Conditions (a)-(d) ensure the convergence of Bj to B; and the asymptotic normality of
Bj. Conditions (a),(b),(f) and (g) ensure the convergence of @; to aj and the asymptotic
normality of &;, while condition (g) ensures the convergence of 0 to 0" and its correspond-
ing asymptotic normality. Condition (h) is the usual positivity assumption required for
IPTW-based methods. The boundedness condition (b) ensures the convergence of the sev-
eral stochastic integrals used in the proofs. Under condition (b) and in conjunction with the
other assumptions, it can be shown that there exists a neighborhood B; of 3} such that
sup ||RY (1:8) = (15 8)|| = 0
tefo,7),BeB;

as n — oo, where -2 means “converges in probability to”, with rg-d) (t;8)/ r](-O) (t; B) bounded
on B; x [0, 7] (Lin and Wei, 1989). Similar results hold for R(Cfl])- (t; ) and r(cﬁ? (t; a)/rg? (t; ).
Condition (b) can be relaxed at the expense of additional technical difficulty.

2



2 Model for Event Time
The assumed model for the death time hazard is given by

Nij(t) = Mt|A; = 4, Z;) = \oj(t) exp(BL Z;),  j=0,1.

We now provide a set of results pertinent to the asymptotic properties listed in Section

4 of the main manuscript.

2.1 n:(B3; - B))

Lin and Wei (1989) proved that, under the assumed regularity conditions listed in Section 4

of the main manuscript, Bj REN B;, and ns (BJ — [3}) is asymptotically normal with
w3, - B) = Z/{z (0585 AME (1) + 0,(1)

ZU” )+ 0,(1),

where U;(8}) = [, {Z: — Z;(t; 8;)}dM;;(t). When the assumed model for event time is

correct, then ,Bj is equal to underlying true target value, 3;.

2.2 n%{f\”(t) - A;j(t)}

We make the following decomposition:

nt{Ay(t) — AL} = n2{A;(t:8;) — Ayt B)} (1)
+n{Ay(1:87) — A (1)} (2)

Through a Taylor series expansion of A;;(¢; BJ) around 37, it is straightforward to show

that
(1) = /0{ZZ-—7j<u;ﬁ}*)}TdMu;ﬁ;f)n%@—ﬁ;>+op<1>

= (t :8 ZUU )+ 0p(1),



where

K,)(t:37) = / (2, — 2w 82) AL ().

As for the second term,
dM5(
R(O (u; 5

@) = exp(872) —2/
= exp(B8;"Z)) —Z/ C(Z(f\f;ﬁ + 0,(1).

Combining these results, it then follows that
Lo *
n2{A;;(t) — Aij (t)}
- dM;5(

= K585 (B Y UL (8)) + exp(8Z) —*Z A

p(1).
2 () (u: 5 to

3 Model for Treatment Probability

The assumed model for treatment assignment is given by
logit{ P(4; = 11Z,)} = 67 X,

where, as explained in the main manuscript, X; consists of functions of the elements of Z;
plus an intercept. It is shown in Zeng and Chen (2009) that, under the assumed regularity

conditions, 0 converges in probability to 8 and

nz(@—6°) = V6" )n 2 Z X {A; — expit (0T X))} + 0,(1)

= V7(6) nTZX{Am pii (07 H=1)"" +0,(1),

for y = 0,1. Therefore,

= —wy(07){1 - py;(0")} XV (0 in{Aij —pij(07)} + 0p(1),

where w;;(0) = A;;/pi;(0). If the assumed model for P(A; = 1|Z;) is correct, then 6 is
equal to the truth, 6.



4 Estimating Survival Probability for Censoring
The assumed model for the censoring time hazard is given by
XG(6) = XA = j, Zi) = X5t exp(e] Z7),  j=0,1.
Parallel to results in Section 2, we have
ni (@, — o) = Qg ZU )+ 0,(1),
where U{(a}) = [[{Z{ — 25 (t; a3) }dMS*(t), and
n%{K%;(t) - AG (1)}

cT *T C dMC*
= K (t;a)) QC] n 2ZU ) +exp(al Z7) Z —l—op(l),

where Kicj(t; o) = fot{ZZC — EJ-CW; a;*)}dAg*(U)

5 Consistency

We proposed the following estimator for A;(¢) in Section 3 of the main manuscript:

- n 5L L dQi;(u: 0, B,, &;)
Ajt: = AA
) / D;(u; 8, B;, &;)

: (3)

where

u /\
and  Gjj(u) =1— / ESHOAIC dMC( ).
0
We now consider two scenarios. In the first scenario (Section 5.1), the coarsening mech-
anism, i.e., treatment assignment and censoring, is modeled correctly, although the death
hazard model may be incorrectly specified. In the second scenario (Section 5.2), the model
for the death time, T', is correct, but that for coarsening mechanism may be incorrect, i.e.,

one or both of the models for treatment assignment, A, and censoring, C'; may be incorrect.
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5.1 Models for A and C (coarsening) are Correct

If the model for P(A; = 1|Z;) is correct, then 8 -2+ 6 and therefore Dij () pi;(0) =
P(A;; = 1|Z;). In addition, if the model for C;|A; = j, Z; is correct, then & SN o and
]\\ZC] —5 AG(t). As the model for T is possibly wrong, Bj 25 85 and Ay (t) 2 Aj;(t), where
B; and Aj;(t) may or may not equal their respective true values.

Considering the denominator of (3),

Dy(u;0,B8,,&;) = E{w;(0)ei™Y;(u)} (4)
#B{ o) [eStage).©

Using iterated conditional expectation arguments by first conditioning on Z;, we show that

4) = E[p{Zd Z,
{20120
_ E{pij(e) P(C; > ulAi; =1,Z;)
i (0) e MG W
= E{P(T} > u|Z;)} = S;(u),
_ gty PO _
(5) E[e {1 pij(e)}:| 0, and
_ _A;rj(u)pz‘j(e) “ AG (s)+A7;(s) c AL _
6) = E[e p—ij(e)E{ X dME (5)| Zs, As; 1}] 0,

Combining the above results, the denominator of (3) = S;(u).

P(T] > u|Z;, Ay = 1)}

Using similar techniques, one can obtain that the numerator of (3) converges in probabil-
ity to —dS;(u) uniformly in u € [0, 7]. Combining results for the numerator and denominator,
we obtain that Kj (t) -2+ A;(t) uniformly in ¢ € [0, 7]. Therefore, by the continuous mapping
theorem, §j (t) -2+ S;(t) uniformly in ¢ € [0,7] and in addition, ji;and § are consistent for

it; and o respectively.

5.2 Model for T is correct

If the model for T'|(A, Z) is correct, then Bj e B, and /A\,-j(t) 25 Ay;(t) uniformly in
t € [0,7]. As the model for A or C' is possibly wrong, the limiting values 6%, o and Aicj*

may or may not equal to the corresponding truth.
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Considering the denominator of (3), since x;(u)Y? (u) = Y;(u), where r;(u) = I(C; >
T; or C; > u), lA)j(u; 5, ,@j, a;) can be rewritten as

n

—~ ~

Y [ g {wy (0)e i ()Y (u) — My () (w)}].
i=1

and it converges in probability to
B[ (07 )Y ) = g 07)(1 = [ AT OHOan s} (7
As explained in the main manuscript, in the context of estimating s;, the full data Tij , 1=
1,...,n, are monotonically coarensed due to treatment assignment and censoring. Applying
Lemma 10.4 of Tsiatis (2006) on monotone coarsening and using the relationship between
censoring and monotone coarsening (Chapter 9.3, Tsiatis, 2006), it follows that

Agrilu) Ay / Ay dM(s) (8)

pu(6)e 5™ p(87) o py(6)e N
Therefore, the second term inside the expectation of (7) can be rewritten as
Aijri(u )YT( )
pij (07)e 5
= (o [ Mz ),
pl]<6 ) 0 pij(O*)e_ i (s)

Substituting the term back to (7), we have

wi; (07)eMT W (W) YT (u) =

(7) = E{e Agj( )}"_E[p,,(é*){I(TiZu)—e Agj( )}} ()
ij
b Aideg(S) e—Nij(u)
E[/O pij(e*)e_AiCj*(s) {[(TZ = e—Nii(s) H (10)
“ AV (s)dAG" (s) e—Ais ()
_E/ JTu zJ* > -1, .
[ 0 pij(e*)efAicj (s) { ( ) P ) }] ( )

It is easy to see that the first term in (9) equals Sj(u) and the second term is equal to zero

B[ (102 0 =)
—F {E p:z” ){I(T >u) —e MW A, Z ]}
= E{pﬁZ*) [E{I(T; > u)|Z, Ay = 1} — efAij(u)}} =0.
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Applying iterated conditionalexpectation arguments again, we have

—Ajj(u)

w Azdeg(S) (&
— > ) — A — = >
o 3 {/o pij(e*)eAg*(S)E[{](E = u) e i (s) }|Z“A” LC=sT2 S}

_ E{ /Ou AigdN; (5) ><0} — 0, and

pij(07)e )

v A, Y (s)dASH —Agj(u)
(11> = E d ](8) éy* (S)E[{[(ﬂzu)_e—}‘ZhAlj:17012877—;28} )
0 pij(0*>6_Aij (s) e—Nij(s)

which is equal to zero as well. Therefore, the denominator converges in probability to S;(u).

Similarly, we can show that the numerator, n=!'> " d@i]’(u;a,@j,aj), converges in
probability to —dS;(u) uniformly in u € [0, 7]. Therefore, the proposed estimators for A;;(¢),
w; and 9 are consistent for the true values when the relationship between survival time and
covariates is correctly modeled, even when the treatment assignment model or model for

censoring is incorrect.

6 Asymptotic Normality

The proposed estimators are consistent for the true values when either the model for survival
time or the models for treatment assignment and censoring are correct. In the proof of
asymptotic normality, we do not specify explicitly which working model is correct and we
generically denote that Bj RN B, Kij(t) RN A(1), 0 - 6", a; o, Kg(t) RN AGH(2),
keeping in mind that they converge to the truth when the corresponding working model is
correct. Let us first consider n%{/A\j(t) —Aj(t)} which, as we will show, can be approximated
by a scaled summation of independent and identically distributed variates. We make the

following decomposition:

n A1) — A0} =n2{A;(1:0,A;,A) — A1)}
= n2{A;(t:0, A, AS) — A (t; 07, A5, A)} (12)
+n2{A;(t07, Ay, AG) — A (107, A3, AG)} (13)
+n2{A;(407, A5 A} — Ay(107, A, AG)} (14)
+n2 {507, A5, AGY) — A1)} (15)
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Considering (12), by a Taylor series expansion around 6" and substituting results in 3,

we obtain that
(6.1) = BI(t;0°,8;,a;)V (0" : D Xi{Ay = pi(07)} + 0,(1),
i—1
where

B;(t;6", 8!, ) =

/ ¢ E[{eMMdN; (u) — e MM dAL ()G (u)} x (—1)wi;(07){1 — pi;(67)} X]
0 Dj(u; 0%, 85, o)

Cx (y Cx dQ; 70*7 f? ;
B W) = Gy 0)1 = )X T L

with

dQ;(u; 0%, B}, aj) = E{dQi;(u; 0", 85, a])},
D;(u; 0%, 8, ) = E{D;(u;6", 85, a})},
Gz](U) = 1—/ 6 ( +A*(S dMC*()
0

Considering (13), by a Taylor series expansion of /A\Zj(u) around Aj;(u) and substituting

results from 2.2, after a lot of algebra and interchanging orders of integration, we have

(13) = F1(t;0", ;,a;)ﬂj—l(ﬁ;)n—%ZUU )+ n” zz/ Ji(u, ;0% B, o) —
=1

plus a term that converges to zero, where

M (u)
O (u; 83)

Fi(0°,8,,a)) =

/t E{e M dAg (u) [{1 — Gij(u)wi; (0 H—Kij(u; 87) + Zi — 2;(u; B5)} + wy (07)O5(u)] }
0 Dj(u; 6*7 ;70‘;)

t A dQ(U,O*, )‘faa%)
+/O E{e [{1 G” (u)w” (9 )}KZJ (uv ﬁ]) Wi (0 )Ow (u)] } D]2<UJ; 0*7 J Oé;]) >




Ji(u,t; 0%, ;‘-,a;) =
/t Ele M dAy(s) exp(B; Zi){ — 1+ Gij(s)wiy(87) + wiy(07)E;(u, 5)}]
v D‘(S'O*, 5 aj)

[{1— ii(wwi;(0%) e i exp(B;" Z)]
D;(u; 6%, B, ')

¢ A% (s . . . dQ;(s; 0%, B, al)
+/ E|:€ Aij( )exp(ﬁ]TZZ){l — GU<8)U}”(9 ) — w”(O )&j(u, S)}] DQ.J(S' 0 J J
u Vi Y Y

o)’
with
v C'x *
O, u) = [ AT ONOK (5 85)dME ),
0
Eyus) = [ ATONOAE )
Using similar techniques and substituting results in 4, we can represent (14) as
- dME*
(14) = PJT(t;O*, ;,a;)ﬂajl(aj)n_%ZUg )+n" 22/ Hj(u,t;0%, 85, aj) O 5 (U ),
i=1 Toj (u; o )

plus a term that converges to zero in probability, where

P,(1,6°. 5, a)) =
tE{wm )" K G (u; 00)dNij (u) + wis(07) R (w)e ™ s dAs (u) }
+/0 D,(u;6° 3., )

Di(u; 67, B}, @)

t
* G (u * * —A*.(u
‘AEWWFM“Mwﬂmwmewmmw%w

Hj(u,t;0%, 8}, a) =
*T

. C C
fﬂwwwﬂwﬂzmmmme%ZEM@ (dAz(s)]
u D](u70*7 ;,O{;)

de(s;O*, ;kaa;k)
D3(s;0",85, )’

t . * . *
/ E{wm 9* “(8) o O TZZ Y ( ) + w@'j(g*)eajTZi Hij(u, S)e_Aij(S)}
with
u Cx s * (g % " .

0
%m$=/¢”*“dwﬂ>eww%wmw.
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Finally, as for the last term, it is straightforward to show that

w5 (7)€ D AM (w) + {1 — wiy (0)Giy(u) e 5 {dAS, (u) — dA ()}
)= n- Z/ By 0 5o

plus a term that converges in probability to zero, where dMZ-Tj (u) = dN;j(u) — Yij(w)dAj(u).
Combining the above results, we have shown that we can represent n%{/AXj(t) —A;(t)} as

n=s > wi(t) plus a term that converges in probability to zero, where

piit) = Bj(t:0".3].a)V 1 (07) Xi{A; — p;(07)}

T * * * —1 * * ! * * * dM*( )
+Fj (tSO ) jvaj)ﬂj (ﬁj)Ul](ﬁ]> + J (U t; 0 B ]) ( B )
T * * * —1 * >s< * dMC*( )
ch(u o)

N / wijw*)eA%*(“)dM; (u) +{1 - wijw*)Gij (e 5 dA () — dA(w)}
0 Dj(u; 0", ;f,a;'f)

When one of the working models is correct, using techniques similar to those used to
prove consistency of Kij(t) for A;;(t), it can be shown that ¢;;(t) has mean zero and are
identically and independently distributed across ¢ = 1,...,n. The expression for ;;(t)
seems complicated; however, this is derived without explicitly assuming which one of the
working models is correct. In fact, when one or all of the models are correct, some of
the terms will be identically equal to zero. For example, if the model for T;|Z;, A; = j is
correctly specified, then B, (; B;, 07, a¥) is equal to zero. To see this, we note that in this

j
case, 3; = B; and Aj;(t) = Ay;(t). Substituting the result (8), it follows that

E [{GAJ'C(")YEJ‘ () — e MM Gy () bwy (07){1 - Pz’j(e*)}Xi]
Ay * u A, dMS(s) A5
— B 1] (T, > _ oA () _/ ] ij (T, > .
{[MH*){ Tz = = | e T2~

x{1 —Pij(e*)}Xi}»

which can be shown to be zero using the iterated conditional expectation arguments similar
to that in section 5.2. Similarly, E[{eAJ'C(“)dNij (u) — e‘Afj(“)dA;?‘j(u)Gij (u) H(=1)w;(0"){1 —
pi;(0)}X;] = 0. Therefore, B;(t;0", 3}, ;) = 0 when the model for T' is correct. In
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addition, if the models for P(A; = 1|Z;) and C;|Z;, A; = j are correct, through arguments
similar to those in Section 5.1, we can show that both F(t; 8%, 0", a}) and J;(u,t; 8}, 0%, o))

are identically zero.

N|=

n

(B —p) = nd / 5, (u) — 8 (u)du

where ¢;; = — fOL Sj(u)gi;(u)du, which is referred to as the ith influence function of f;.
When either the model for death time or the models for coarsening probability is correct,
the ¢,; variates are independent and identically distributed with mean 0. Therefore, n2 (j; —
;) converges to a normal distribution with mean 0 and variance E( 12]) It then follows

that n2 (3 — 0) is also asymptotically normal with mean 0 and variance E(¢; — ¢0)* with

n%(g— J) = n-z Yo (fin — dio) + 0p(1).

7 Additional Simulation

Additional simulation results are reported in Tables 1 and 2. Data are generated the same

methods described in the main manuscript, except that a sample size of n = 300 is used.
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Table 1: Additional simulation with sample size n=300 and L=10. Entries as in Table 1 in
the main manuscript.

Method T Z C BIAS ESD ASE CP BIAS ESD ASE Cp
fo (k0=5.978) fi1 (p1=6.949)
Proposed T T T 0.009 0.293 0.284 0.941 0.002 0.272 0.267 0.944
T F F 0025 0.295 0.283 0.929 -0.006 0.269 0.267 0.949
F T T 0009 0301 0315 0948 -0.002 0.276 0.287 0.958
F F F 0405 0.313 0.300 0.687 -0.301 0.294 0.288 0.804
Hubbard T T T 0.040 0.295 0.289 0.930 0.053 0.272 0.269 0.936
T F F 0060 0.295 0.284 0.923 0.052 0.270 0.268 0.937
F T T 0.045 0304 0.322 0.944 0.050 0.277 0.288 0.944
F F F 0462 0.315 0.302 0.620 -0.248 0.294 0.290 0.853
IPTW T -0.102 0.324 0.376 0.970 0.034 0.286 0.319 0.963
F 0.258 0.328 0.352 0.889 -0.269 0.308 0.322 0.888
Chen & Tsiatis T 0.012 0.285 0.277 0.931 0.009 0.263 0.259 0.949
F 0.296 0.312 0.298 0.808 -0.326 0.285 0.282 0.772
5 =T — fip (6=0.871)
Proposed T T T -0.007 0.314 0.310 0.946
T F F -0032 0314 0.309 0.938
F T T -0.011 0.326 0.375 0.966
F F F -0706 0.377 0.364 0.498
Hubbard T T T 0.013 0.316 0.315 0.943
T F F -0.008 0.314 0.308 0.944
F T T 0005 0330 0.383 0971
F F F -0710 0.379 0.366 0.500
IPTW T 0.136 0.356 0.494 0.988
F -0.527 0.406 0478 0.832
Chen & Tsiatis T -0.003 0.301 0.293 0.933
F -0.622 0.373 0.357 0.584
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Table 2: Additional simulation with sample size n=300 and L=20. Entries as in Table 1 in
the main manuscript.

Method T Z C BIAS ESD ASE CP BIAS ESD ASE Cp
Fo (10=9-806) fi1 (p1=11.488)
Proposed T T T 0.007 0.564 0.576 0.949 0.020 0.582 0.576 0.947
T F F 0.050 0.575 0.572 0.947 0.007 0.575 0.573 0.948
F T T 0001 0579 0628 0971 0.014 0.594 0.623 0.955
F F F 0824 0.640 0.627 0.721 -0.677 0.616 0.610 0.789
Hubbard T T T 0.024 0.573 0.598 0.955 0.127 0.583 0.580 0.937
T F F 0108 0.573 0.573 0.949 0.124 0.578 0.578 0.946
F T T 0025 0590 0.651 0970 0.121 0.596 0.629 0.955
F F F 0926 0.643 0.628 0.669 -0.573 0.618 0.615 0.832
IPTW T -0.416 0.609 0.723 0.934 0.131 0.639 0.715 0.969
F 0.274 0.649 0.707 0.945 -0.569 0.654 0.697 0.889
Chen & Tsiatis T 0.020 0.552 0.551 0.954 0.025 0.560 0.560 0.949
F 0.441 0.611 0.598 0.877 -0.658 0.591 0.597 0.801
5 =T — fip (6=1.682)
Proposed T T T 0.013 0.637 0.642 0.949
T F F -0043 0.645 0.635 0.936
F T T 0013 0.658 0.774 0.970
F F F -1.501 0.792 0.762 0.492
Hubbard T T T 0103 0.648 0.666 0.943
T F F 0016 0.645 0.638 0.940
F T T 009 0.672 0.800 0.966
F F F -1.498 0.795 0.767 0.497
IPTW T 0.547 0.731 1.020 0.974
F -0.844 0.845 0.995 0.899
Chen & Tsiatis T 0.005 0.608 0.601 0.942
F -1.100 0.754 0.730 0.677
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