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Abstract. This paper is concerned with the problem of learning the
globally optimal structure of a dynamic Bayesian network (DBN). We
propose using a recently introduced information theoretic criterion named
MIT (Mutual Information Test) for evaluating the goodness-of-fit of the
DBN structure. MIT has been previously shown to be effective for learn-
ing static Bayesian network, yielding results competitive to other popu-
lar scoring metrics, such as BIC/MDL, K2 and BD, and the well-known
constraint-based PC algorithm. This paper adapts MIT to the case of
DBN. Using a modified variant of MIT, we show that learning the glob-
ally optimal DBN structure can be efficiently achieved in polynomial
time.

Keywords: Dynamic Bayesian network, global optimization, gene reg-
ulatory network.

1 Introduction

Bayesian network (BN) is a central topic in machine learning, and has found
numerous applications [8]. Two important disadvantages when applying the tra-
ditional static BN model to certain domain problems, such as gene regulatory
network reconstruction in bioinformatics, are: (i) BN does not have a mecha-
nism for exploiting the temporal aspect of time-series data; and (ii) BN does
not allow the modeling of cyclic phenomena, such as feed back loops, which
are prevalent in biological systems [13, 9]. These drawbacks have motivated the
development of the so-called dynamic Bayesian network (DBN). The simplest
model of this type is the first-order Markov stationary DBN, in which both the
structure of the network and the parameters characterizing it are assumed to
remain unchanged over time, as exemplified in Fig. 1a. In this model, the value
of a random variable (RV) at time t+1 is assumed to depend only on the value of
its parents at time t. DBN accounts for the temporal aspect of time-series data,
in that an edge must always direct forward in time, and allows feedback loops
(Fig. 1b). Since its inception, DBN has received particular interest, especially
from the bioinformatics community [7, 13, 14, 12]. Recent works in the machine
learning community have progressed to allow more flexible DBN models, such as
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one with, either parameters [5], or both structure and parameters [10,4] changing
over time. It is worth noting that more flexible models generally require more
data to be learned accurately. In situations where training data are scarce, such
as in microarray experiments where the data size can be as small as a couple of
dozen samples, a simpler model such as the first-order Markov stationary DBN
might be a more suitable choice.
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Fig. 1. Dynamic Bayesian Network: (a) 1st order Markov stationary DBN; (b) its
equivalent folded network; (c) data alignment for dynamic Bayesian network with an
edge Xj → Xi. The “effective” number of observations is now only N − 1.

In this paper, we focus on the problem of learning the globally optimal struc-
ture for the first-order Markov stationary DBN. Henceforth, DBN shall refer
to this particular class of stationary DBN, and learning shall refer to struc-
ture learning. The most popular approaches for learning DBN have been the
ones adapted from the static BN literature, namely the search+score paradigm
[13, 12], and Markov Chain Monte Carlo (MCMC) simulation [7, 4, 10]. In this
paper, we are interested in the search+score approach, in which we specify a
scoring function to assess the goodness-of-fit of a DBN given the data, and
a search procedure to find the optimal network based on this scoring metric.
Several popular scores for static BN, such as the Bayesian scores (K2, Bayesian-
Dirichlet (BD), BDe and BDeu), and the information theoretic scores (Bayesian
Information Criterion (BIC)/minimal description length (MDL) and Akaike In-
formation Criterion—AIC), can be adapted straightforwardly for DBN. Another
recently introduced scoring metric that catches our interest is the so-called MIT
(Mutual Information Test) score [1], which, as the name suggests, belongs to the
family of scores based on information theory. Through extensive experimental
validation, the author suggests that MIT can compete favorably with Bayesian
scores, outperforms BIC/MDL and should be the score of reference within those
based on information theory. As opposed to the other popular scoring metrics,
MIT has not been considered for DBN learning to our knowledge.

As for the search part, due to several non-encouraging complexity results (i.e.,
NP-hardness) in learning static BN [2], most authors have resorted to heuris-
tic search algorithms when it comes to learning DBN. Recently, Dojer [3] has
shown otherwise that learning DBN structure, as opposed to static BN, does not
necessarily have to be NP-hard. In particular, this author showed that, under
some mild assumptions, there are algorithms for finding the globally optimal
network with a polynomial worst-case time complexity, when the MDL and BDe
scores are used. In the same line of these findings, in this paper, we shall show
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that there exists a polynomial worst-case time complexity algorithm for learn-
ing the globally optimal DBN under the newly introduced MIT scoring metric.
Our experimental results show that, in terms of the recovered DBN quality,
MIT performs competitively with BIC/MDL and BDe. In terms of theoretical
complexity analysis, globalMIT admits a comparable worst-case complexity to
the BIC/MDL-based global algorithm, and is much faster than the BDe-based
algorithm. The paper is organized as follows: in Section 2 we review the MIT
score for DBN learning. Section 3 presents our algorithm for finding the globally
optimal network, followed by experimental results in section 4.

2 MIT Score for Dynamic Bayesian Network Learning

Let us first review the MIT score for learning BN, which can then be adapted
to the DBN case. Briefly speaking, under MIT the goodness-of-fit of a network
is measured by the total mutual information shared between each node and its
parents, penalized by a term which quantifies the degree of statistical significance
of this shared information. Let X = {X1, . . . , Xn} denote the set of n variables
with corresponding {r1, . . . , rn} discrete states, D denote our data set of N
observations, G be a DAG, and Pai = {Xi1, . . . , Xisi} be the set of parents of
Xi in G with corresponding {ri1, . . . , risi} discrete states, si = |Pai|, then the
MIT score is defined as:

SSMIT (G : D) =
∑n

i=1;Pai �=∅{2N · I(Xi, Pai) − ∑si
j=1 χα,liσi(j)

}

where I(Xi,Pai) is the mutual information between Xi and its parents as es-
timated from D. χα,lij is the value such that p(χ2(lij) ≤ χα,lij ) = α (the Chi-
square distribution at significance level 1−α), and the term liσi(j) is defined as:

liσi(j) =

{
(ri − 1)(riσi(j) − 1)

∏j−1
k=1 riσi(k), j = 2 . . . , si

(ri − 1)(riσi(j) − 1), j = 1

where σi = {σi(1), . . . , σi(si)} is any permutation of the index set {1 . . . si} of
Pai, with the first variable having the greatest number of states, the second
variable having the second largest number of states, and so on. It can be shown
that the mutual information part of the score is equivalent to the log-likelihood
score, while the second part serves as a penalty term. For detailed motivations
and derivation of this scoring metric as well as an extensive comparison with
BIC/MDL and BD, we refer readers to [1].

Adapting MIT for DBN learning is rather straightforward. Essentially, the
mutual information is now calculated between a parent set and its child, which
should be 1-unit shifted in time, as required by the first-order Markov assump-
tion, denoted by X

−→
1

i = {Xi2, Xi3, . . . , XiN}. As such, the number of “effective”
observations, denoted by Ne, for DBN is now only N − 1. Similarly, when the
data is composed of Nt separate time-series, the number of effective observations
is only Ne = N − Nt. This is demonstrated in Figure 1(c). The MIT score for
DBN should be calculated as:

S′
MIT (G : D) =

n∑
i=1;Pai �=∅

{2Ne.I(X
−→
1

i ,Pai) −
si∑

j=1

χα,liσi(j)}
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3 Optimal Dynamic Bayesian Network Structure
Learning in Polynomial Time with MIT

In this section, we show that learning the globally optimal DBN with MIT can
be achieved in polynomial time. Our development is based on a recent result
presented in [3], which states that under several mild assumptions, there exists a
polynomial worst-case time complexity algorithm for learning the optimal DBN
with the MDL and BDe scoring metrics. Specifically, the 4 assumptions that
Dojer [3] considered are:

Assumption 1. (acyclicity) There is no need to examine the acyclicity of the
graph.

Assumption 2. (additivity) S(G : D) =
∑n

i=1 s(Xi,Pai : D|Xi∪Pai) where
D|Xi∪Pai denotes the restriction of D to the values of the members of Xi ∪Pai.

To simplify notation, we write s(Pai) for s(Xi,Pai : D|Xi∪Pai).

Assumption 3. (splitting) s(Pai) = g(Pai) + d(Pai) for some non-negative
functions g,d satisfying Pai ⊆ Pa′

i ⇒ g(Pai) ≤ g(Pa′
i)

Assumption 4. (uniformity) |Pai| = |Pa′
i| ⇒ g(Pai) = g(Pa′

i)

Assumption 1 is valid for DBN in general (since the edges only directs forward
in time, acyclicity is automatically satisfied). Assumption 2 states that the scor-
ing function decomposes over the variables, which is obvious for MIT. Together
with assumption 1, this assumption allows us to compute the parents set of
each variable independently. Assumption 3 requires the scoring function to de-
compose into two components: d evaluating the accuracy of representing the
distribution underlying the data by the network, and g measuring its complex-
ity. Furthermore, g is required to be a monotonically non-decreasing function in
the cardinality of Pai (assumption 4).

We note that unlike MIT in its original form that we have considered above,
where better networks have higher scores, for the score considered by Dojer, lower
scored networks are better. And thus the corresponding optimization must be
cast as a score minimization problem. We now consider a variant of MIT as
follows:

SMIT (G : D) =
∑n

i=1 2Ne.I(X
−→
1

i , X) − S′
MIT (G : D) (1)

which admits the following decomposition over each variable (with the conven-
tion of I(Xi, ∅) = 0):

sMIT (Pai) = dMIT (Pai) + gMIT (Pai)

dMIT (Pai) = 2Ne.I(X
−→
1

i ,X) − 2Ne.I(X
−→
1

i ,Pai)

gMIT (Pai) =
∑si

j=1 χα,liσi(j)
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Roughly speaking, dMIT measures the “error” of representing the joint distri-
bution underlying D by G, while gMIT measures the complexity of this repre-
sentation. It is obvious that the problem of S′

MIT maximization is equivalent to
the problem of SMIT minimization, since

∑n
i=1 2Ne.I(X

−→
1

i ,X) = const. Also, it
is straight-forward to show that dMIT and gMIT satisfy assumption 3. Unfortu-
nately, gMIT does not satisfy assumption 4. However, for many applications, if
all the variables have the same number of states then it can be shown that gMIT

satisfies assumption 4.

Assumption 5. (variable uniformity) All variables in X have the same number
of discrete states k.

Proposition 1. Under the assumption of variable uniformity, gMIT satisfies
assumption 4.

Proof. It can be seen that if |Pai| = |Pa′
i| = si, then gMIT (Pai) = gMIT (Pa′

i) =∑si

j=1 χα,(k−1)2kj−1 . ��
Since gMIT (Pai) is the same for all parent sets of the same cardinality, we can
write gMIT (|Pai|) in place of gMIT (Pai). With assumptions 1-5 satisfied, we
can employ the following Algorithm 1, named globalMIT, to find the globally
optimal DBN with MIT, i.e., the one with the minimal SMIT score.

Algorithm 1. globalMIT : Optimal DBN with MIT
Pai := ∅
for p = 1 to n do

If gMIT (p) ≥ sMIT (Pai) then return Pai; Stop.
P = arg min{Y⊆X:|Y|=p} sMIT (Y)
If sMIT (P) < sMIT (Pai) then Pai := P.

end for

Theorem 1. Under assumptions 1-5, globalMIT applied to each variable in X
finds a globally optimal DBN under the MIT scoring metric.

Proof. The key insight here is that once a parent set grows to a certain extent,
its complexity alone surpasses the total score of a previously found sub-optimal
parent set. In fact, all the remaining potential parent sets P omitted by the
algorithm have a total score higher than the current best score, i.e., sMIT (P) ≥
gMIT (|P|) ≥ sMIT (Pai), where Pai is the last sub-optimal parent set found. ��

We note that the terms 2Ne.I(X
−→
1

i ,X) in the SMIT score in (1) do not play any
essential role, since they are all constant and would not affect the outcome of
our optimization problem. Knowing their exact value is however, necessary for
the stopping criterion in Algorithm 1, and also for constructing its complexity
bound, as we shall do shortly. Unfortunately, calculating I(X

−→
1

i ,X) is by itself
a hard problem, requiring O(kn+1) space and time in general. However, for our
purpose, since the only requirement for dMIT is that it must be non-negative,
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it is sufficient to use an upper bound of I(X
−→
1

i ,X). A fundamental property of
the mutual information states that I(X,Y) ≤ min{H(X), H(Y)}, i.e., mutual
information is bounded by the corresponding entropies. We therefore have:

2Ne.I(X
−→
1

i ,X) ≤ 2Ne.H(X
−→
1

i ),

where H(X
−→
1

i ) can be estimated straightforwardly from the data. Or else, we
can use an a priory fixed upper bound for all H(X

−→
1

i ), that is log k, then:

2Ne.I(X
−→
1

i ,X) ≤ 2Ne. log k.

Using these bounds, we obtain the following more practical versions of dMIT :

d′MIT (Pai) = 2Ne.H(X
−→
1

i ) − 2Ne.I(X
−→
1

i ,Pai)

d′′MIT (Pai) = 2Ne. log k − 2Ne.I(X
−→
1

i ,Pai)

It is straightforward to show that Algorithm 1 and Theorem 1 are still valid
when d′MIT or d′′MIT are used in place of dMIT .

3.1 Complexity Bound

Theorem 2. globalMIT admits a polynomial worst-case time complexity in the
number of variables.

Proof. Our aim is to find a number p∗ satisfying gMIT (p∗) ≥ sMIT (∅). Clearly,
there is no need to examine any parent set of cardinality p∗ and over. In the
worse case, our algorithm will have to examine all the possible parent sets of
cardinality from 1 to p∗ − 1. We have:

gMIT (p∗) ≥ sMIT (∅) ⇔
p∗∑

j=1

χα,liσi(j) ≥ dMIT (∅) = 2Ne.I(X
−→
1

i , X).

As discussed above, since calculating dMIT is not convenient, we use d′MIT and
d′′MIT instead. With d′MIT and d′′MIT , p∗ can be found respectively as:

p∗ = argmin{p|∑p
j=1 χα,liσi(j) ≥ 2Ne.H(X

−→
1

i )} (2)

p∗ = argmin{p|∑p
j=1 χα,liσi(j) ≥ 2Ne. log k}. (3)

It can be seen that p∗ depends only on α, k and Ne. Since there are O(np∗
) subsets

with at most p∗ parents, and each set of parents can be scored in polynomial
time, globalMIT admits an overall polynomial worst-case time complexity in the
number of variable n. ��
We now give some examples to demonstrate the practicability of Theorem 2.
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Example 1: Consider a gene regulatory network reconstruction problem, where
each gene has been discretized to k = 3 states, corresponding to up, down
and regular gene expression. With the level of significance α set to 0.999 as
recommended in [1], we have gMIT (1) = 18.47; gMIT (2) = 51.37; gMIT (3) =
119.35 . . . Consider a data set of N = 12 observations, which is the popular length
of microarray time-series experiments (in fact N often ranges within 4−15), then
d′′MIT (∅) = 2(N − 1) log k = 24.16. Observing that gMIT (2) > d′′MIT (∅), then
p∗ = 2 and we do not have to consider any parent sets of 2 variables or more.
Let us compare this bound with those of the algorithms for learning the globally
optimal DBN under the BIC/MDL and BDe scoring metrics. For BIC/MDL,
p∗MDL is given by 
logk N�, while for BDe, p∗BDe = 
N logγ−1 k�, where the
distribution P (G) ∝ γ

∑ |Pai|, with a penalty parameter 0 < γ < 1, is used as
a prior over the network structures [3]. In this case, p∗MDL = 3. If we choose
log γ−1 = 1 then p∗BDe = 
N log k� = 14. In general, p∗BDe scales linearly with
the number of data items N , making its value less of practical interest, even for
small data sets.

Example 2: Since the number of observations in a single microarray time-
series experiment is often limited, it is a popular practice to concatenate several
time-series to obtain a larger data set for analysis. Let us merge Nt = 10 data
sets, each with 12 observations, then Ne = N − Nt = 120 − 10 = 110. For
this combined data set, gMIT (4) > d′′MIT (∅) = 2Ne log k = 241.69 ⇒ p∗ = 4,
thus there is no need to consider any parent set of more than 3 variables. Of
course, this analysis only gives us the worst-case time complexity. In practice,
the execution of Algorithm 1 can often be much shorter, since sMIT (Pai) is
often much greater than sMIT (∅). For comparison, we have p∗MDL = 5, and
p∗BDe = 132 with log γ−1 = 1.

4 Experimental Evaluation

We next describe our experiments to evaluate our global approach for learning
DBN with MIT, and compare it with the other most popular scores, namely
BIC/MDL and BD. Our method, implemented in Matlab, was used, along with
BNFinder [12], a Python-based software for inferring the globally optimal DBN
with the MDL and BDe scores as proposed by Dojer [3]. In addition, we also
employed the Java-based Banjo software [6], which can perform greedy search
and simulated annealing over the DBN space using the BDeu metric. The specific
problem domain that we shall work with in this experiment is the problem of gene
regulatory network reconstruction from microarray data, with the variables being
genes, and edges being regulatory relationship between genes. We employ several
synthetic data sets generated by different data generation schemes that have been
used in some previous studies, namely, probabilistic method [7], linear dynamical
system based method [13], and non-linear dynamical system based method [11].
As a realistic number of samples for microarray data, we generated data sets
of between 30 and 300 samples. With the ground-truth network available, we
count the number of true positive (TP), false positive (FP), true negative (TN)
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and false negative (FN) edges, and report two network quality metrics, namely
sensitivity= TP/(TP+FN), and imprecision=FP/(FP+TP).

Parameters setting: globalMIT has one parameter, namely the significance
level α, to control the trade-off between goodness-of-fit and network complexity.
Adjusting α will generally affect the sensitivity and imprecision of the discovered
network, very much like its affect on the Type-I and Type-II error of the mutual
information test of independence. de Campos [1] suggested using very high levels
of significance, namely 0.999 and 0.9999. We note that, the data sets used in [1]
are of sizes from 1000 to 10000 samples. For microarray data sets of merely
30 − 300 samples, it is necessary to use a lower level of significance α to avoid
overly penalizing network complexity. We have experimentally observed that
using α ∈ [0.95, 0.999] on these small data sets yielded reasonable results, with
balanced sensitivity and imprecision. BNFinder+MDL required no parameter
tuning, while for BNFinder+BDe, the pseudo-counts for the BDe score was set
to the default value of 1, and the penalty parameter was set to the default
value of log γ−1 = 1. For Banjo, we employed simulated annealing as the search
engine, and left the equivalent sample size to the default value of 1 for the
BDeu score, while the max-fan-in was set to 3. The runtime for Banjo was set
to the average runtime of globalMIT, with a minimum value of 10 minutes,
in case where globalMIT terminates earlier. Since some experiments were time
consuming, all our experiments were performed in parallel on a 16-core Xeon
X5550 workstation.

Probabilistic Network Synthetic Data: We employed a subnetwork of the
yeast cell cycle, consisting of 12 genes and 11 interactions, as depicted in Fig.
2(a). Two different conditional probabilities were associated with these interac-
tions, namely noisy regulation according to a binomial distribution, and noisy
XOR-style co-regulation (see [7] for the parameter details, and this author web-
site for Matlab code to generate this data). In addition, 8 unconnected nodes
were added as confounders, for a total of 20 nodes. For each number of samples
N = 30, 70 and 100, we generated 10 data sets. From the average statistics in
Table 1, it can be seen that this is a relatively easy case for all methods. Except
Banjo which committed a lower sensitivity and yet a higher imprecision, all other
methods nearly recovered the correct network. Note that due to the excessive
runtime of BNFinder+BDe, for N = 100, only 1 of ten data sets was analyzed.

�

�

� �

�

�

(a) The yeast cell cycle

�

�

(b) Yu’s net No. 1

�

(c) Yu’s net No. 2

Fig. 2. Synthetic Dynamic Bayesian Networks
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Linear Dynamical System Synthetic Data: We employed the two synthetic
networks as described in [13], each consisting of 20 genes, with 10 and 11 genes
having regulatory interaction, while the remainder moving in a random walk,
as depicted in Fig. 2(b,c). The data are generated by a simple linear dynamical
process as: Xt+1−Xt = A(Xt−T )+ε, with X denoting the expression profiles, A
describes the strength of gene-gene regulations, T is the constitutive expression
values, and ε simulates a uniform biological noise. The detailed parameters for
each network can be found in [13]. Using the GeneSim software provided by
these authors, we generated, for each number of sample N = 100, 200 and 300,
10 data sets for each network. From the average statistics in Table 1, it can be
seen that Banjo performed well on both data sets. BNFinder achieved a slightly
lower sensitivity, but with very high imprecision rate. It is probable that the
self-link suppression default option in BNFinder has led the method to include
more incorrect edges to the network for a reasonable goodness-of-fit. GlobalMIT
performed worse at N = 100, but is better at higher number of samples. Again,
due to time limit, we were only able to run BNFinder+BDe on one out of ten
data sets for each network at N = 200 and 300.

Table 1. Experimental Results

Probabilistic Network Synthetic Data

N
GlobalMIT Banjo BNFinder+MDL BNFinder+BDe

Sen Imp Time Sen Imp Time Sen Imp Time Sen Imp Time

30 95 ± 9 29 ± 13 13 ± 3 84 ± 6 70 ± 4 600 86 ± 10 10 ± 9 < 2 85 ± 8 11 ± 11 52 ± 4

70 100 ± 0 1 ± 3 67 ± 4 82 ± 0 51 ± 6 600 100 ± 0 5 ± 7 25 ± 1 100 ± 0 3 ± 4 2.7 ± 0.5h

100 100 ± 0 0 ± 0 499 ± 56 82 ± 0 43 ± 2 600 100 ± 0 1 ± 3 34 ± 1 100 0 9.4h∗

Linear Dynamical System Synthetic Data: Yu’s net No. 1

100 54 ± 12 54 ± 13 66 ± 5 58 ± 9 35 ± 16 600 58 ± 9 72 ± 4 4 ± 1 67 ± 7 74 ± 4 4.4 ± 1.3h

200 77 ± 4 19 ± 9 409 ± 127 67 ± 5 8 ± 9 600 66 ± 4 74 ± 2 47 ± 5 67 84 13.6h∗

300 79 ± 4 19 ± 12 .6 ± .07h 69 ± 7 4 ± 6 0.6h 68 ± 4 77 ± 2 49 ± 5 67 84 26.5h∗

Linear Dynamical System Synthetic Data: Yu’s net No. 2

100 22 ± 15 72 ± 17 44 ± 8 38 ± 11 59 ± 13 600 28 ± 12 83 ± 7 3 ± 1 30 ± 16 86 ± 7 3.3 ± 0.8h

200 49 ± 15 35 ± 19 534 ± 158 45 ± 14 37 ± 16 600 38 ± 8 79 ± 4 39 ± 5 42 85 12.1h∗

300 62 ± 12 24 ± 11 .49 ± .05h 53 ± 9 17 ± 13 0.49h 47 ± 9 78 ± 4 40 ± 6 50 85 21.2h∗

Non-Linear Dynamical System Synthetic Data

99 37 ± 10 59 ± 12 < 1 7 ± 3 13 ± 32 600 13 ± 11 81 ± 14 < 1 16 ± 13 77 ± 17 < 1

150 39 ± 16 58 ± 16 < 1 9 ± 11 16 ± 35 600 19 ± 15 71 ± 23 < 1 24 ± 18 67 ± 24 < 1

300 61 ± 7 51 ± 6 < 1 10 ± 12 30 ± 48 600 24 ± 14 74 ± 14 < 1 23 ± 20 80 ± 15 < 1

Sen: percent sensitivity; Imp: percent imprecision; Time: in seconds, unless otherwise specified
∗: only run on one data set.

Non-Linear Dynamical System Synthetic Data: We employed a five-gene
network as in [11], of which dynamics is modeled by a system of coupled differ-
ential equations adhering to the power-law formalism, called the S-system. The
concrete form of an S-system is given as follows:

dXi

dt
= αi

n∏
j=1

X
gij

j − βi

n∏
j=1

X
hij

j , i = 1 . . . n, (4)

where the rates αi, βi and kinetic orders gij and hij are parameters dictating
the influence of gene Xj on the rate of change in the expression level of gene
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Xi. Using the same system parameters as in [11], we integrated the system using
the Runge-Kutta method with 10 different initial conditions to obtain 10 time
series, each of length 50. We then randomly chose 3 time series of length 33, 3
of length 50 and 6 of length 50, to make data sets of length N = 99, 150 and 300
respectively, with 10 data sets for each N value. Although this data had been
previously analyzed with good accuracy by using differential equation models,
it proved to be the most challenging case for DBN based methods. Even with
a fairly large number of samples, compared to a small number of variables and
interactions, all the methods performed poorly, with low sensitivity and high
imprecision, rendering the results hardly useful. GlobalMIT nevertheless showed
a slight advantage, with a reasonable sensitivity and imprecision at N = 300.

5 Conclusion

This paper has investigated the problem of learning the globally optimal DBN
structure with the MIT scoring metric. We have showed that this task can be
achieved using a polynomial time algorithm. Compared with the other well-
known scoring metrics, namely BIC/MDL and BDe, both in terms of the worst-
case complexity bound and practical evaluation, the BIC/MDL-based algorithm
for learning the globally optimal DBN is fastest, followed by MIT, whereas the
extensive runtime required by the BDe-based algorithm renders it a very ex-
pensive option. GlobalMIT, which is based on a sound information theoretic
criterion, represents a very competitive alternative, both in terms of the net-
work quality and runtime required.

Acknowledgments. This project is supported by an Australia-India strategic
research fund (AISRF). Implementation of the proposed algorithms in Matlab
and C++ is available at http://code.google.com/p/globalmit.
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