C-H Bond Functionalization via Hydride Transfer: Formation of α-Arylated Piperidines and 1,2,3,4-Tetrahydroisoquinolines via Stereoselective Intramolecular Amination of Benzylic C-H Bonds

Paul A. Vadola, Ignacio Carrera and Dalibor Sames*

Department of Chemistry, Columbia University, 3000 Broadway, New York, New York, 10027

Supporting Information

Part A.	Lewis Acid Screen Table S1: The Effect of Various Metal Salts on Substrate 3	2
Part B.	Discussion of the Reactivity of Chiral Substrate S5: B.1 Results of the HT-amination of chiral substrate S5 B.2 Rationale for the HT-amination results of S5	3 4
Part C.	X-Ray Data: Product 11 Product 19 Product 39.	5 7 9

Part A. Lewis Acid Screen:

entry	reagent	product 2 (%)	SM 3 (%)	imine 1 (%)
1	BF ₃ •OEt ₂	86	0	0
2	TiF ₄	82	0	0
3	InCl ₃	40	32	27
4	HfCl ₄	40	0	0
5	In(OTf) ₃	31	34	33
6	AuBr ₃	30	17	39
7	PtCl ₄	27	2	0
8	TiCl ₄	23	0	0
9	Sc(OTf) ₃	0	25	75
10	ScCl ₃	0	43	56
11	Al(OTf) ₃	0	65	34
12	Cu(OTf) ₂	0	73	26
13	$B(C_{6}F_{5})_{3}$	0	77	22
14	Ti(OEt) ₄	0	90	10
15	Zn(OTf) ₂	0	99	0
16	ZnCl ₂	0	99	0
17	PtCl ₂	0	99	0
18	AuCl	0	83	0
19	Hf(OTf) ₄	0	0	0
20	AlCl ₃	0	0	0

Table S1: The Effect of Various Metal Salts on Substrate 3

All reactions were setup under an argon atmosphere employing 2 equivalents of reagent in DCE at 0.05 M concentration to substrate **3** and heated in a reaction block at 80 °C. Yields were determined by ¹H NMR relative to 1,2,4,5-tetrachlorobenzene, which was used as an internal standard.

Part B. Discussion of the Reactivity of Chiral Substrate S5:

B.1 Results of the HT-amination of chiral substrate S5

Enantiomeric excess analysis was carried out by HPLC using a Chiracel OD Column No. OD00CE-1G001 from Daicel Chemical Industries, LTD. 97 % Hexanes, 3% Isopropanol were used with a flow rate of 1 mL/min.

Chromatogram obtained for racemic standard (compound 19)

Chromatogram obtained for compound S7

Results obtained with enhanced integrator!

B.2 Rationale for the HT-amination results of S5

Substrate **S5** was subjected to the standard reaction conditions without the addition of toluenesulfonamide. After stirring for 2 hr at 80 °C the reaction was worked-up according to the general HT-amination procedure. The resulting crude aldehyde was converted to hydrazone **S6** as previously described. The resulting product was analyzed by ¹H NMR and was found to have a diastereomeric ratio of >99:1. This result indicated that under the reaction conditions the aldehyde does not undergo tautomerization by the action of BF₃•OEt₂. Given this observation we propose that the epimierization of the α -substituent occurs following formation of the intermediate imine, which likely proceeds through reversible imine-enamine tautomerization.

Part C. X-ray Data for Products 11, 19 and 39:

ORTEP of compound 11

Compound Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume, Z Density (calculated) Absorption coefficient F (000) Crystal size Θ range for data collection Limiting indicies Reflections collected Independent reflections Completeness to $\Theta = 31.00^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data/restraints/parameters Goodness-of-fit on F² Final R indices $[I \ge 2\sigma(I)]$ R indicies (all data) Largest diff. peak and hole

11

C₂₀H₂₅NO₃S 359.47 g/mol 150(2) K 0.71073 Å monoclinic P2₁/n a = 12.8046(7) Å alpha = 90° b = 10.1185(5) Å beta = 105.4920(10) ° c = 15.2099(8) Å gamma = 90°

1899.05(17) Å³, 4 1.257 Mg/m³ 0.188 mm^{-1} 768 0.45 x 0.40 x 0.30 mm 1.85 to 31.00° $-18 \le h \le 18, -14 \le k \le 14, -22 \le l \le 22$ 30712 $6072 (R_{int} = 0.0245)$ 100.0% EMPIRICAL 0.9456 and 0.9200 Full-matrix least-squares on F^2 6072 / 0 / 229 1.027 R1 = 0.0401, wR2 = 0.1090R1 = 0.0507, wR2 = 0.11860.447 and -0.434 eÅ-3

ORTEP of compound 19

Compound Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume, Z Density (calculated) Absorption coefficient F (000) Crystal size Θ range for data collection Limiting indicies Reflections collected Independent reflections Completeness to $\Theta = 31.00^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data/restraints/parameters Goodness-of-fit on F² Final R indices $[I \ge 2\sigma(I)]$ R indicies (all data) Largest diff. peak and hole

19

C₂₀H₂₅NO₃S 359.47 g/mol 200(2) K 0.71073 Å monoclinic P2₁/n a = 13.6482(7) Å alpha = 90° b = 10.2749(5) Å beta = 103.1450(10) ° c = 13.7082(7) Å gamma = 90°

1871.98(16) Å³, 4 1.257 Mg/m^{3} 0.191 mm⁻¹ 768 0.31 x 0.25 x 0.25 mm 1.90 to 30.57° $-19 \le h \le 19, -14 \le k \le 14, -19 \le l \le 19$ 29321 5757 ($R_{int} = 0.0299$) 99.9% EMPIRICAL 0.9538 and 0.9431 Full-matrix least-squares on F^2 5757 / 0 / 229 1.035 R1 = 0.0482, wR2 = 0.1264R1 = 0.0655, wR2 = 0.1391 0.599 and -0.460 eÅ-3

Compound Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume, Z Density (calculated) Absorption coefficient F (000) Crystal size Θ range for data collection Limiting indicies Reflections collected Independent reflections Completeness to $\Theta = 31.00^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data/restraints/parameters Goodness-of-fit on F² Final R indices $[I > 2\sigma(I)]$ R indicies (all data) Largest diff. peak and hole

39

C₂₈H₂₅NO₂S 439.55 g/mol 125(2) K 0.71073 Å monoclinic C2/c a = 27.9292(15) Å alpha = 90° b = 8.1522(4) Å beta = 92.9860(10) ° c = 19.4546(10) Å gamma = 90°

4423.5(4) Å³, 8 1.320 Mg/m^3 0.173 mm^{-1} 1856 0.43 x 0.40 x 0.10 mm 1.46 to 30.50° $-39 \le h \le 39, -11 \le k \le 11, -27 \le l \le 27$ 34522 $6754 (R_{int} = 0.0222)$ 99.9% EMPIRICAL 0.9829 and 0.9295 Full-matrix least-squares on F^2 6754 / 0 / 290 1.042 R1 = 0.0402, wR2 = 0.1050R1 = 0.0471, wR2 = 0.11180.575 and -0.298 eÅ-3