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Figure S1.  Slow inactivation of WT hEAG1 currents during a 
long depolarizing pulse. (Top) From a Vh of 100 mV, 10-s Vpres 
to 115 and 0 mV were applied, each followed by a 30-s-long test 
pulse to +30 mV. (Bottom) Note that test current elicited after the 
prepulse to 115 mV was larger than after the prepulse to 0 mV, 
but that currents relax (inactivate) to a common level by the end 
of the 30-s test pulse. Traces represent average currents recorded 
from five oocytes.

Figure S2.  Y464A-induced inactivation in hEAG1 is not slowed 
by elevated [K+]e. (A) Normalized and superimposed traces of 
Y464A hEAG1 currents at +30 mV elicited from a Vh of 100 mV 
in 2 mM [K+]e (gray trace), 20 mM [K+]e (dashed trace), and 104 
mM [K+]e (black trace). (B) Inactivation time constants at +30 mV 
in different [K+]e. The decay phase of currents elicited from a Vh 
of 100 mV was fitted with a two-exponential function (n = 4). 
There was no significant effect of [K+]e on either time constant (P 
> 0.05). (C) Normalized and superimposed traces of Y464A 
hEAG1 currents at +50 mV elicited from a Vh of 70 mV in 2 mM 
[K+]e (gray trace), 20 mM [K+]e (dashed trace), and 104 mM [K+]
e (black trace). (D and E) The decay phase of currents at the indi-
cated Vt, elicited from a Vh of 70 mV, was fitted with a two-expo-
nential function to determine inactivation time constants in 
different [K+]e (n = 5). inact(fast) (D) for [K+]e of 104 mM was less 
than [K+]e = 2 mM (P = 0.03) or [K+]e = 20 mM (P = 0.02). inact(slow) 
(E) for [K+]e of 104 mM was less than [K+]e = 2 mM (P = 0.01) or 
[K+]e = 20 mM (P = 0.005).
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Figure S4.  Extracellular TEA blocks Y464A hEAG1 current but 
does not slow rate of inactivation. (A) Effect of 10 mM TEA on 
currents elicited with voltage steps varying from 60 to +60 mV in 
10-mV increments from a Vh of 100 mV. (B) Normalized peak 
I-V relationships for hEAG1 channels recorded under control 
conditions () and after the application of 10 mM TEA () to 
the external solution (n = 9). (C) Normalized end of 2-s pulse I-V 
relationships recorded under control conditions () and after 
the application of 10 mM TEA (; n = 9). (D) Voltage-dependent 
reduction in current amplitude from peak to end of 2-s pulse un-
der control conditions () and after the application of 10 mM 
TEA (; n = 9). (E) Effect of 10 mM TEA on the time constants 
for onset of inactivation plotted as a function of Vt. The decay 
phase of currents elicited from a Vh of 100 mV was fitted with a 
two- or one-exponential function. TEA accelerated the rate of fast 
inactivation (two-way ANOVA; P < 0.0001). In B–D, the SEM bars 
are smaller than symbol size.

Figure S5.  ICA-enhanced inactivation of WT 
hEAG1 is not slowed by external TEA. (A) Com-
parison of fast and slow inactivation time con-
stants. The decay phase of currents recorded 
during a 10-s pulse to +5, +20, and +35 mV was fit-
ted with a two-exponential function to estimate 
the time constants for inactivation in the pres-
ence of 2 µM ICA with and without the coapplica-
tion of 10 mM of extracellular TEA. TEA reduced 
the time constants of inactivation for pulse to +5 
mV (P < 0.05) but had no effect at other poten-
tials. (B) Comparison of relative amplitudes for 
fast (Af) and slow (As) components of inactiva-
tion at the indicated Vt (n = 5).

Figure S3.  ICA accelerates onset of Y464A hEAG1 current inacti-
vation. (A) Voltage-pulse protocol used to elicit currents plotted 
in B and C. From a Vh of 100 mV, 10-s Vpres to 130 and 70 mV 
preceded a 4.5-s test pulse to +30 mV. Currents recorded during 
the test pulse (boxed region) are shown in B and C. (B) Normal-
ized and superimposed traces of Y464A hEAG1 currents at +30 
mV elicited after Vpre to 130 mV under control conditions (black 
trace) and after 1 µM ICA (red trace). (C) Normalized and super-
imposed traces of Y464A hEAG1 currents at +30 mV elicited after 
Vpre to 70 mV under control conditions (black trace) and after 1 
µM ICA (red trace).
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Figure S6.  Western blots for hEAG1, calnexin, GAPDH, and G 
in whole cell fraction of oocytes injected with WT, Y464L (YL), 
Y464I (YI), Y464M (YM), Y464V (YV), and Y464W (YW) hEAG1 
cRNA, or uninjected (UN). The three right columns are from a 
different batch of oocytes and different gel. hEAG1 antibody 
showed reactivity to many intracellular proteins in the whole cell 
fractions, overlapping the hEAG1 protein (113-kD) signal. A se-
lective high molecular weight signal is visible (denoted by arrow) 
only in the cRNA-injected groups. Calnexin is an ER protein; 
GAPDH and G are cytoplasmic proteins.

Figure S7.  F359A rescues gating of Y464A hEAG1. 
(A) Voltage-pulse protocol and currents for F359A/
Y464A hEAG1 channels. Currents were elicited with 
1-s voltage pulses applied in 10-mV increments to a 
variable Vt. Vh was 60 mV, and the interpulse inter-
val was 15 s. (B) Peak I-V relationship for F359A/
Y464A hEAG1 () and uninjected control cells (). 
(C) Current recordings for F359A hEAG1 using the 
pulse protocol shown in A.
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Figure S8.  Schematics of simple linear Mar-
kov models of EAG1 current. (A) Five-state 
model. (B) Six-state model.

Figure S9.  Simulated EAG1 current (I) and 
effect of ICA determined with different Mar-
kov models. In each panel, currents are shown 
in response to 10-s pulses to a Vpre of 130, 
100, 70, 40, 10, and +20 mV, followed 
by a test pulse to +30 mV. (A–C) Simulated 
control I for 5-, 6-, and 10-state models, re-
spectively. (D–F) Simulated I in the presence 
of 5 µM ICA for 5-, 6-, and 12-state models, re-
spectively. Color coding of traces is the same 
as noted in Fig. 11.

Figure S10.  Kinetics of WT hEAG1 channel cur-
rents is similar in the presence of 2 or 10 µM ICA. 
(A) Comparison of activation and inactivation 
time constants. Currents recorded during 10-s 
pulses to +5 and +20 mV were fitted with a three-
exponential function to estimate a single time 
constant for the onset of activation and two time 
constants for onset of inactivation in the pres-
ence of 2 or 10 µM ICA (n = 4–5). (B) Compari-
son of relative amplitudes for fast (Af) and slow 
(As) components of inactivation at the indicated 
Vt. [ICA] did not significantly alter any measure 
of inactivation (P > 0.05).
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Table S1 
Features for model fitting and their fit errors

Feature Weighting factor Control 2 µM ICA 5 µM ICA 10 µM ICA Y464A

Ipre-max 1 0.072 0.217 0.448 0.558 0.115

Ipre-end 1 0.082 0.479 0.810 0.539 0.108

pre-slow 0.1 0.057 0.061 0.284 0.259 0.068

pre-fast 0.5 0.074 0.137 0.345 0.207 0.098

Imax 2 0.267 0.110 0.495 0.552 0.237

Iend 2 0.249 0.270 0.251 0.177 0.274

Ilate 2 0.079 0.002 0.032 0.012 0.012

test-slow 0.25 0.162 0.143 0.198 0.188 0.161

test-fast 0.25 0.222 0.185 0.225 0.223 0.181

Max Cj
j
∑ 2 0.004 0.020 0.002 0.011 0.004

Max Oj
j
∑ 1 0.189 0.020 0.130 0.006 0.055

E f f fi m i e i e i= −, , ,/ .
2 2

 Weighting factors were applied to emphasize or deemphasize features. Ipre-max, maximal normalized current during prepulse; 
Ipre-end, normalized current at the end of prepulse; pre-slow, slow time constant from biexponential fit of current during prepulse; pre-fast, fast time constant 
from biexponential fit of current during prepulse; Imax, maximal normalized current during test pulse; Iend, normalized current at the end of test pulse; 
Ilate, normalized current after 20-s test pulse; test-slow, slow time constant from biexponential fit of current during test pulse; test-fast, fast time constant from 
biexponential fit of current during test pulse.

Table S2 
Initial values for models

Models States Symbol Value

5-state

Zeroth closed state C0 1

First–third closed state C1, …, C3 0

Open state O 0

6-state

Zeroth closed state C0 1

First–third closed state C1, …, C3 0

Open state O 0

Inactivated state I 0

10-state

Zeroth closed state C0 0.5

First–third closed state C1, …, C3 0

Open state O 0

Zeroth inactivated state I0 0.5

First–fourth inactivated state I1, …, I4 0

12-state

Zeroth closed state C0 0.5

First–third closed state C1, …, C3 0

First and second open state O1, O2 0

Zeroth inactivated state I0 0.5

First–fifth inactivated state I1, …, I5 0
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Table S3 
Rate constant parameters for models

Parameter Symbol Control 2 µM 5 µM 10 µM Y464A Unit

Closed–closed and closed–open transitions 0 15.620309 10.440446 11.631091 11.148303 6.617790 s1

z 0.481494 0.533413 0.440578 0.329040 0.600499

0 13.260124 4.574153 11.332073 11.273359 3.100676 s1

z 0.004189 0.032021 0.029397 0.007126 0.032085

Closed–inactivated transitions CI0 0.001194 0.001473 0.000004 0.014683 0.002182 s1

CI0 0.086253 0.065298 0.015226 0.027916 0.281901 s1

CI1 0.025614 0.129125 0.164319 0.152015 0.084866 s1

CI1 0.016028 0.077180 0.0442683 0.043349 0.268716 s1

CI2 0.025614 0.256777 0.3286340 0.289347 0.167551 s1

CI2 0.016028 0.089063 0.0733105 0.058782 0.246698 s1

CI3 0.025614 0.384429 0.4929490 0.426679 0.250234 s1

CI3 0.016028 0.100946 0.10235275 0.074215 0.224681 s1

Open–inactivated transitions 0I 0.001194 0.512082 0.657264 0.564011 0.332919 s1

0I 0.086253 0.112829 0.131395 0.089648 0.202663 s1

Open–open transition  0.278176 N/A N/A N/A N/A s1

 0.738245 N/A N/A N/A N/A s1


