

EMSA of Lef1 and Otx2 binding to 157FM. *In vitro* synthesized Lef1 and Otx2 bind to 157FM-wt but not to 157FM-TCFmt and 157FM-BHPmt, respectively.

Fig. S2

EMSA of Brn1, Brn4 and Oct6 binding to X29. (A) Deletion constructs used in EMSA. (B) EMSA indicated that each POU_H of Brn1, Brn4 and Oct6, but not POU_S , associates with X29-wt probe (left panel). Neither POU_H nor POU_S associates with *PN-1* octamer probe (right panel).

Fig. S3

RT-PCR analysis of marker expression in anterior and posterior NPCs differentiated from P19 cells. Forebrain markers (*Six3*, *Otx1*, *Otx2*) and midbrain markers (*Otx1*, *Otx2*, *Dmbx1*) are expressed in anterior NPCs, but not in posterior NPCs; *Pax6* is expressed abundantly in forebrain and midbrain but less in spinal cord; this is also the case in anterior and posterior NPCs. In contrast, hindbrain and spinal cord markers (*Gbx2*, *Hoxd4*) are expressed only in posterior NPCs. *Wnt1*, *Lef1*, *Meis2* and *Tle4* are expressed in both anterior and posterior NPCs. Mesoderm marker (*T*), endoderm marker (*Sox17*), and pluripotent marker (*Oct4*) are less efficiently expressed in these cells. β -act expression is given as an internal control.

Fig. S4

Temporal changes of *Otx1*, *Otx2*, *Gbx1*, *Gbx2*, *Brn1*, *Brn2*, *Brn4*, *Oct6*, *Axin2* and *Oct4* expression and of Wnt signaling with the P19 differentiation into anterior (blue) and posterior NPCs (red). (A) RT-qPCR assay of mRNA levels in the cells cultured in the induction medium for indicated hours; the levels at 0 hr give the expression in undifferentiated P19 cells. The levels are given as the ratio to the *Tbp* expression. *Otx1* and *Otx2* were expressed in anterior NPCs, while *Gbx1* and *Gbx2* in posterior NPCs. In the anterior NPCs (at 84 hrs), *Brn2* and *Oct6* expression was higher, while *Brn1* and *Brn4* expression was lower. In posterior NPCs (at 84 hrs), *Brn1* expression was higher, while *Brn2* and *Brn4* expression was moderate; *Oct6* was transiently expressed at 24-36 hours post induction. A Wnt signal marker, *Axin2*, expression was higher in posterior NPCs at 48 hours post induction. (B) TOP-flash activity was higher in posterior NPCs.

Α

Brn2

1	ATG	GCG	ACC	GCA	GCG	тст	AAC	CAC	TAC	AGC	CTG	CTC	ACC	TCC	AGC	GCC	TCC	ATC	GTA	CAT	60
61	GCC	GAG	CCG	ССТ	GGC	GGC	ATG	CAG	CAG	GGC	GCA	GGG	GGC	TAC	CGC	GAG	GCG	CAG	AGC	CTG	120
121	GTG	CAG	GGC	GAC	TAC	GGC	GCG	СТG	CAG	AGC	AAC	GGG	CAC	CCG	СТС	AGC	CAC	GCT	CAC	CAG	180
181	TGG	ATC	ACC	GCG	СТG	TCC	CAC	GGC	GGC	GGC	GGC	GGG	GGC	GGC	GGC	GGC	GGT	GGA	GGA	GGC	240
241	GGG	GGA	GGC	GGC	GGG	GGA	GGC	GGC	GAC	GGC	TCC	CCG	TGG	тсс	ACC	AGC	ссс	СТА	GGC	CAG	300
301	CCG	GAC	ATC	AAG	ссс	TCG	GTG	GTG	GTA	CAG	CAG	GGT	GGC	CGA	GGC	GAC	GAG	CTG	CAC	GGG	360
361	CCA	GGA	GCG	CTG	CAG	CAA	CAG	CAT	CAA	CAG	CAA	CAG	CAA	CAG	CAG	CAG	CAG	CAG	CAG	CAG	420
421	CAG	CAG	CAG	CAG	CAA	CAG	CAG	CAG	CAA	CAA	CAG	CGA	CCG	CCA	CAT	CTG	GTG	CAC	CAC	GCT	480
481	GCC	AAC	CAC	CAT	ссс	GGG	ссс	GGG	GCA	TGG	CGG	AGT	GCG	GCG	GCT	GCA	GCT	CAC	CTC	ССТ	540
541	CCC	TCC	ATG	GGA	GCT	TCC	AAC	GGC	GGT	TTG	СТС	TAT	TCG	CAG	CCG	AGC	TTC	ACG	GTG	AAC	600
601	GGC	ATG	CTG	GGC	GCA	GGA	GGG	CAG	CCG	GCT	GGG	CTG	CAC	CAC	CAC	GGC	CTG	AGG	GAC	GCC	660
661	CAC	GAT	GAG	CCA	CAC	CAT	GCA	GAC	CAC	CAC	CCG	CAT	CCG	CAC	тст	CAC	CCA	CAC	CAG	CAA	720
721	CCG	ссс	CCG	CCA	CCT	CCC	CCA	CAA	GGC	CCA	CCG	GGC	CAC	CCA	GGC	GCG	CAC	CAC	GAC	CCG	780
781	CAC	TCG	GAC	GAG	GAC	ACG	CCG	ACC	TCA	GAC	GAC	CTG	GAG	CAG	TTC	GCC	AAG	CAA	TTC	AAG	840
841	CAG	AGG	CGG	, TC	g AAA	t CTC	C GGA	TTT	ACT	CAA	GCA	GAC	GTG	GGG	CTG	GCG	СТТ	GGC	ACC	CTG	900
901	TAC	GGC	AAC	GTG	TTC	TCG	CAG	ACC	ACC	ATC	TGC	AGG	TTT	GAG	GCC	CTG	CAG	CTG	AGC	TTC	960
961	AAG	AAC	ATG	TGC	AAG	CTG	AAG	ССТ	TTG	TTG	AAC	AAG	TGG	TTG	GAA	GAG	GCA	GAC	TCA	TCC	1020
1021	TCG	GGC	AGC	ссс	ACC	AGC	АТА	GAC	AAG	ATC	GCA	GCG	CAA	GGG	CGC	POUI AAA	n dor CGG	nain AAA	AAG	CGG	1080
1081	ACC	TCC	ATC	GAG	GTG	AGC	GTC	AAG	GGG	GCT	CTG	GAG	AGC	CAT	TTC	СТС	AAA	TGC	ССТ	AAG	1140
1141	ccc	TCG	GCC	CAG	GAG	ATC	ACC	TCC	СТС	GCG	GAC	AGC	TTA	CAG	СTG	GAG	AAG	GAG	GTG	GTG	1200
1201	AGA	GTT	TGG	TTT	TGT	AAC	AGG	AGA	CAG	AAA	GAG	AAA	AGG	ATG	ACC	сст	ссс	GGA	GGG	ACT	1260
1261	СТG	CCG	GGC	GCC	GAG	GAT	GTG	TAT	GGG	GGT	AGT	AGG	GAC	ACG	CCA	CCA	CAC	CAC	GGG	GTG	1320
1321	CAG	ACG	ссс	GTC	CAG	TGA															1338

Fig. S5-1

Brn2 (A), *Oct6* (B), and *Gbx2* (C) coding sequences, and locations of miRNA target sequences and silent mutations. Red bars indicate miRNA target sequences, and blue letters silent mutations in *Brn2sm* and *Oct6sm*.

B Oct6

1 ATG GCC ACC ACC GCG CAG TAT CTG CCG CGG GGC CCC GGC GGA GCT GGG GGC ACA GGG CCG CTC ATG CAT CCC GAT GCC GCC GCG GCG GCG GCG GCG GCC GAG CGG CTG CAC GCG GGG GCC GCG TAC CGC GAA GTG CAG AAG CTG ATG CAC CAC GAG TGG CTG GGC GCG GGC GCG GGC CAC CCC GTG GGC CTA GCG CAC CCT CAA TGG CTA CCC ACG GGA GGA GGC GGC GGC GGC GAC TGG GCG GGC GGC CCG CAC CTG GAA CAC GGC AAG GCA GGC GGT GGC GGT ACC GGC CGA GCT GAC GAC GGC GGC GGT GGC GGC GGT TTC CAC GCC CGC CTG GTG CAC CAA GGG GCG GCC CAC GCG GGC GCG GCA TGG GCA CAA GGC GGC ACA GCG CAC CAC TTG GGC CCC GCC ATG TCG CCG TCG CCC GGG GCC GGC GGG GGT CAC CAG CCC CAG CCG CTC GGG CTG TAC GCT CAG GCG GCC TAC CCC GGT GGC GGC GGC GGC GGC CTG GCC GGG ATG CTG GCG GCG GGA GGC GGC GGC GCG GGA CCC GGC CTG CAC CAC GCA CTG CAC GAG GAC GGC CAC GAG GCA CAG CTG GAG CCG TCG CCA CCG CAC CTG GGC GCA CAC GGA CAC GCA CAC GGA CAT GCA CAC GCG GGC GGC CTG CAC GCG GCG GCG GCG CAC CTG CAC CCG GGC GCG GGC GGT GGT GGC TCG TCG GTG GGC **POUs domain** GAG CAC TCG GAC GAG GAT GCT CCC AGC TCC GAC GAC CTG GAG CAG TTC GCC AAG CAG TTC AAG CAA CGA CGC ATC AAG CTG GGC TTC ACC CAG GCC GAC GTG GGA CTG GCG CTG GGC ACC CTC TAC GGT AAC GTG TTC TCG CAG ACC ACC ATC TGC CGT TTC GAG GCC CTG CAG CTG AGC TTC AAG AAC ATG TGC AAG CTC AAG CCG CTG CTC AAC AAG TGG CTG GAG GAG ACC GAC TCG POUh domain TCC AGC GGC AGC CCC ACC AAC CTG GAC AAG ATC GCG GCG CAG GGC CGC AAG CGC AAG AAG CGC ACG TCC ATC GAG GTG GGT GTC AAA GGC GCG CTC GAG AGC CAC TTT CTC AAG TGT CCC AAG CCG TCT GCG CAC GAG ATC ACC GGC CTG GCC GAC AGC CTG CAA CTG GAG AAG GAG GTG GTG CGT GTC TGG TTC TGC AAC CGG CGG CAG AAG GAG AAG CGC ATG ACC CCC GCG GCC GGC GCG GGC CAC CCG CCC ATG GAC GAT TAT GCG CCT GGG GAG CTG GGG CCT GGC GGG GGG CAG CGC GTC GCC ACC TTC TGC GCC CCC GCC ACC CCC GCC GGC CGC GCT GCA CCA CCA 1321 CCA CCA CAC ACT GCC CGG CTC TGT GCA GTG ACC CTG CGG ACT GGG TTC CCC GCC GGC GCA 1381 GCG GTG CCT CCG GCG CGC AGT TAG

Fig. S5-2

С

Gbx2

1 ATG AGC GCA GCG TTC CCG CCG TCG CTG ATG ATG ATG CAG CGC CCG CTG GGG AGT AGT ACC 60 61 GCC TTC AGC ATA GAC TCG CTG ATC GGC AGC CCG CCG CAG CCC AGT CCC GGC CAT TTC GTC 120 TAC ACC GGC TAC CCC ATG TTC ATG CCC TAC CGG CCG GTG GTG CTG CCG CCA CCG CCA 121 180 CCG CCT CCC GCG CTG CCC CAG GCA GCG CTG CAG CCC GCT CTG CCG CCC GCG CAC CCT CAC 181 240 CAC CAG ATC CCC AGC CTG CCC ACC GGC TTC TGC TCC AGC CTG GCG CAG GGC ATG GCG CTC 241 300 301 ACC TCC ACG CTC ATG GCC ACT CTG CCC GGC GGC TTC TCT GCG TCG CCC CAG CAC CAA GAG 360 GCG GCG GCT GCC CGC AAG TTC GCT CCA CAG CCA CTG CCC GGA GGC GGC AAC TTC GAC AAA 361 420 421 GCC GAG GCG CTC CAA GCG GAT GCG GAA GAC GGC AAA GCC TTC TTG GCC AAG GAG GGC TCG 480 CTG CTC GCT TTC TCT GCG GCC GAA GCG GTG CAG GCG TCG CTC GTC GGG GCT GTC CGA GGG 481 540 541 CAA GGG AAA GAC GAG TCA AAG GTG GAA GAT GAC CCG AAG GGC AAG GAG GAG AGC TTC TCT 600 601 CTG GAG AGC GAT GTG GAT TAC AGC TCA GAT GAC AAT TTG CCT GGT CAG ACT GCT CAT AAG 660 661 GAA GAA GAC CCC GGC CAC GCA CTG GAG GAG ACC CCG CAG AGC GGC GGT GCA GCA GGC AGC 720 Homeodomain 721 ACC ACG TCC ACA GGC AAG AAC CGG CGG CGG CGG ACT GCC TTC ACC AGC GAA CAG CTG CTG 780 781 GAG CTG GAG AAA GAA TTC CAC TGC AAA AAG TAC CTC TCC CTG ACC GAG CGC TCA CAG ATC 840 GCC CAC GCC CTC AAA CTC AGC GAG GTG CAA GTA AAA ATC TGG TTC CAG AAC CGC CGG GCC 841 900 AAG TGG AAA CGT GTC AAG GCA GGC AAC GCC AAT TCC AAG ACG GGG GAG CCC TCT CGG AAC 960 901 961 CCC AAG ATT GTC GTC CCC ATC CCT GTT CAC GTT AGC AGG TTC GCT ATT CGA AGT CAA CAC 1020 #2 1021 CAG CAG CTG GAG CAG GCC CGA CCC TGA 1047

Fig. S5-3

Protein	No. of peptides	Coverage
Brn1	6	16%
Brn2	7	17%
Brn4	7	20%
Oct6	5	7%

Primers used for plasmid construction. Underlines indicate target sites for restriction enzymes shown in right column.

Primer	Sequence (5'-3')	Underline
Brn1 forward	ATGGCCACGGCGGCTTCTAACCC	
Brn1 reverse	CCCGGCATTCACTGCACGC	
Brn2 forward	CGGCTCCGAGAGTCATGGC	
Brn2 reverse	GCTTGAGTTCACTGGACGG	
Brn4 forward	GAGGATCCTCATCGACCATG	
Brn4 reverse	CTCCTTGCTTCCTCCAGTCA	
Oct6 forward	ATGGCCACCGCGCGCAGTATC	
Oct6 reverse	TCACTGCACAGAGCCGGGCAGTG	
Brn1 POU_{H} forward	GCTG <u>GAATTC</u> ACCATGTCGAGCACTGGCAGTCCCAC	EcoRI
Brn1 POU _H reverse	GCCTCTTCGCTATTACGCCA	
Brn1 POU _s forward	AGGG <u>GAATTC</u> ACCATGGACCCTCACTCGGACGAG	<i>Eco</i> RI
Brn1 POU _s reverse	GCTT <u>TCTAGA</u> CTACGCTGCGATCTTGTCAATGC	XbaI
Brn2 POU_{H} forward	GAA <u>GGTACC</u> ATGTCATCCTCGGGCAGCCCCA	KpnI
Brn2 POU_H reverse	GCCTCTTCGCTATTACGCCA	
Brn2 POU _s forward	GGC <u>GGTACC</u> ATGGACCCGCACTCGGACGAG	KpnI
Brn2 POU _s reverse	GTTTTGC <u>CTCGAG</u> TCACGCTGCGATCTTGTCTATGC	XhoI
Brn4 POU_H forward	GGAG <u>GGTACC</u> ATGTCATCCACAGGAAGCCCGAC	KpnI
Brn4 POU_{H} reverse	GCCTCTTCGCTATTACGCCA	
Brn4 POU _s forward	CTCG <u>GGTACC</u> ATGCAGGACCACTCTGATGAAGAG	KpnI
Brn4 POU _s reverse	GCGTTT <u>CTCGAG</u> CTAAGCAGCGATCTTGTCAATGC	XhoI
<i>Oct6</i> POU_{H} forward	GGAG <u>GGTACC</u> ATGTCGTCCAGCGGCAGCCCCA	KpnI
<i>Oct6 POU_H</i> reverse	GCCTCTTCGCTATTACGCCA	
Oct6 POU _s forward	TGGC <u>GGTACC</u> ATGGGCGAGCACTCGGACGAG	KpnI
$Oct6 POU_s$ reverse	GCGCTT <u>CTCGAG</u> CTACGCCGCGATCTTGTCCAG	XhoI

Primers used for RT-PCR analysis

Primer	Sequence (5'-3')
β - <i>act</i> forward	ATTACTGCTCTGGCTCCTAG
β -act reverse	ACGCAGCTCAGTAACAGTCC
Dmbx1 forward	TGTACCAATCTTCCTGAGGC
Dmbx1 reverse	GACAGGCTCAGTTGAAGTTC
Gbx2 forward	GGAGCTGGAGAAAGAATTCC
Gbx2 reverse	GAACCTGCTAACGTGAACAG
Hoxd4 forward	GCCAGATCAAGATCTGGTTC
Hoxd4 reverse	TGGAGTGCAAGAAGGGATAG
Lef1 forward	ACACAACTGGCATCCCTCATC
Lef1 reverse	TTCTGCCCAGGATCTGGTTG
Meis2 forward	GCATGGATGGGCAGTGGCAC
Meis2 reverse	GGGTCCATGTCTTAACTGAG
Oct4 forward	CCAATGCCGTGAAGTTGGAG
Oct4 reverse	TCTTAAGGCTGAGCTGCAAG
Otx1 forward	TGGGCTCGCCTTCAATTCTG
Otx1 reverse	TGGAGGGTATAGGTAGTTGC
Otx2 forward	CTGTTACCAGCCATCTCAATC
Otx2 reverse	ATAGCTTCTACAGGTCTTCAC
Pax6 forward	AGTGAATGGGCGGAGTTATG
Pax6 reverse	ACTGTAATCGAGGCCAGTAC
Six3 forward	AACTCCTCATCAGAGGGTTG
Six3 reverse	CACAGCTTCACAATCCACTC
Sox17 forward	TGTGTATAAGCCCGAGATGG
Sox17 reverse	AGGATTTCCTTAGCGCTTCC
<i>T</i> forward	GGTTCTCCGATGTATGAAGG
T reverse	TGCCACTTTGAGCCTAGAAG
Tle4 forward	CAGTTGCATCTTCATGAGAGC
Tle4 reverse	TAAACCGTAGCTTTCTTGTCC
Wnt1 forward	GTTCTGCACGAGTGTCTATG
Wnt1 reverse	TCAGGATGGCAAAAGGGTTC

Primers used for quantitative RT-PCR analysis

1	· · · · · · · · · · · · · · · · · · ·
Primer	Sequence (5'-3')
Axin2 forward	TGGGACGACGAGACAGTGC
Axin2 reverse	GATCCTCTCCACTTTGCCCAG
Brn1 forward	TGTGGAAAGACAGCACCAACC
Brn1 reverse	TCAAAGTTGGCAACGCATTG
Brn2 forward	ATGGGGGTAGTAGGGACACG
Brn2 reverse	CCGCTTGAGTTCACTGGACG
Brn4 forward	CTTCAGCTTCGTGCGGAGAG
Brn4 reverse	GCTGGACCAGAATCTTCGTGAC
Gbx1 forward	ACGTCAACAGGTTTGCTGTG
Gbx1 reverse	GGCCAAATAGTCTTGTGTCC
Gbx2 forward	ACCATGGAGAGGCCCTAACAC
Gbx2 reverse	TTCTGCTTTAAACAGTGGAGTCTGAC
Oct4 forward	GAACCTGGCTAAGCTTCCAAG
Oct4 reverse	CCAATACCTCTGAGCCTGGTC
Oct6 forward	TTTGTATGCCCGACTAAACCG
Oct6 reverse	GATGGGTCAGAAATTAGGAAACCA
Otx1 forward	CCCGACTGTCTGGACTATAAGGAC
Otx1 reverse	TCCTGGGCTCACAAGACCTG
Otx2 forward	CAATGTCCCAGGCTCATTCA
Otx2 reverse	TCAGTGCCAACTACCTGTTGGT
Tbp forward	GTGATGTGAAGTTCCCTATAAGG
Tbp reverse	CTACTGAACTGCTGGTGGGTCA

Oligonucleotides used to construct miRNA expression plasmids

Primer	Sequence (5'-3')					
	TGCTGAGTAAATCCGAGTTTGATCCGGTTT					
miR-Brn2 top	TGGCCACTGACTGACCGGATCAATCGGATT					
	ТАСТ					
	CCTGAGTAAATCCGATTGATCCGGTCAGTC					
miR-Brn2 bottom	AGTGGCCAAAACCGGATCAAACTCGGATTT					
	ACTC					
	TGCTGTGCAGAACCAGACACGCACCAGTTT					
miR-Oct6 top	TGGCCACTGACTGACTGGTGCGTCTGGTTC					
	TGCA					
	CCTGTGCAGAACCAGACGCACCAGTCAGTC					
miR-Oct6 bottom	AGTGGCCAAAACTGGTGCGTGTCTGGTTCT					
	GCAC					
	TGCTGTTTACTTGCACCTCGCTGAGTGTTT					
miR-Gbx2#1 top	TGGCCACTGACTGACACTCAGCGGTGCAAG					
	ТААА					
	CCTGTTTACTTGCACCGCTGAGTGTCAGTC					
miR-Gbx2#1 bottom	AGTGGCCAAAACACTCAGCGAGGTGCAAGT					
	AAAC					
	TGCTGTAGCGAACCTGCTAACGTGAAGTTT					
miR-Gbx2#2 top	TGGCCACTGACTGACTTCACGTTCAGGTTC					
	GCTA					
	CCTGTAGCGAACCTGAACGTGAAGTCAGTC					
miR-Gbx2#2 bottom	AGTGGCCAAAACTTCACGTTAGCAGGTTCG					
	CTAC					